電場による吸着・移動現象を利用したイオン分離の研究

1 緒言

クロマトグラフ法は現在もっとも使用頻度 の大きい分離分析法の一つであり、すでに多 数の応用例が報告されてい.しかし、この方 法では固定相の性質が事実上固定されている ために、実験条件の変更は固定相の交換を除 けば移動相組成の変化程度にとどまる.した がって、固定相の性質を外部からの制御によ り変化させることができれば、この方法の自 由度はさらに高まることになる.ここでは、 電場により固定相の性質を変化させる電気化 学的イオンクロマトグラフ法について報告す る.

電気化学的クロマトグラフ法として,すでに 電解クロマトグラフィが発表されているが¹, ここでは非ファラディックな検討について述 べる.この方法では,カラム充填材が電気伝導

Figure 1. Adsorption of ions onto electroconductive stationary phase

長岡 勉, 小倉興太郎

性で、そのイオン吸着特性が電場により変化す ることを原理としている24.このため、カラム の電位を変化させることにより、イオンの保持 時間を変えることが可能となる.すなわち,吸 着力が大きく容易に溶離しないようなイオン. あるいは、溶離が速すぎ十分な分離が得られな いようなイオンに対して,固定相電位を調節す ることによりその溶離を最適化することが可 能となる.Fig.1に分離の原理を示す.電導性 カラムを用いた分離の試みは、電気的に中性な 有機化合物に対して今までにも試みられてい るが、個々の成分に対する分離ピークを得るま でには至っていない5,6.これら研究では、中性 有機化合物が零点電位(pzc)付近で電極に強く 吸着することを分離の原理としているが,電気 化学的に考えれば、イオン性物質の分離の方が より理論的に単純である.しかしながら.この ような分離法の開発はまだ試みられていない. この論文では、酸化的前処理によりイオン吸着

> 特性を向上させたカーボン粒子 をカラム材料とする,電気化学的 イオンクロマトグラフ法の開発 を試みる.さらに,イオノフォア を含む油層で表面コートした固 定相を用いる電気化学クロマト グラフィについても述べる.

2 実験

電極カラム クロマトグラムは 電極カラム,島津LC-6Aポン プ,Rheodyne 7120インジェクタ (サンプルループ 20 µ L),イオ ン検出器により測定した.電極 カラムとしてVYCOR ガラス

^{*}山口大学工学部応用化学工学科 本論文は、藤永太一郎博士の叙勲を記念して御寄稿頂き ました。

チューブ(内径6 mm)に多孔質カーボン粒 子を充填したものを用い、直径0.5 mmのらせ ん状ステンレス線(SUS 316)を対極. AglAgCl (sat. KCl) を参照電極とした. カラ ム長は4-16cmであり、参照電極をカラム長4 cmに対して1個配置した.固定相として、 酸化的前処理を行なったグラッシーカーボン 粒子(東海カーボンGC-20, 直径<45 u m),活性炭(片山化学, <45 µm)を用い た.活性炭はそのまま用いたが、グラッシー カーボンは400℃において4時間空気酸化した ものを用いた、この論文では、特に述べない かぎり、4時間酸化処理した炭素粒子を8 cm のVYCOR管に充填したカラム用いた.移動 相としては、固定相と吸着相互作用の少ない テトラエチルアンモニウム過塩素酸塩 (TEAP) 10-50 mMを含む水溶液を用いた.

このクロマトグラフ法では、比較的高濃度 の無関係電解質溶液を移動相に用いるので、 電気伝導度法でイオンを検出することは困難 であると思われる.したがって検出器とし て、著者らが新たに開発したカーボンセン サーを用いた⁷.この低インピーダンス・ポ テンショメトリックセンサーは、ここで報告 する全てのイオンに対して応答し、2価イオ ンは1価イオンのほぼ倍の感度を有してい た.

3 結果および考察

電子顕微鏡およびBET表面積測定による 固定相表面の観察 グラッシーカーボン表 面を走査型電子顕微鏡で調べたところ,アル ミナ研磨のみを行なった表面は比較的平坦で あったが,空気酸化を行なうことによりその 表面が荒れてくることが分かった.Brunauer-Emmett-Teller (BET)面積および細孔体積 は,窒素ガス吸着法によって求めたが,これ らは酸化処理時間の増大にともない増大した ²⁴.BET面積および細孔体積の増大は,電子 顕微鏡写真より得られた結果と良く対応して

Transactions of The Research Institute of Oceanochemistry Vol. 6, No. 1, April, 1993 (73)

いる.細孔体積とBET面積から求めたグラッ シーカーボンの平均細孔半径は、酸化処理時 間と共に増大したが、4時間空気酸化を行 なったカーボンでは、円筒形細孔を仮定した 場合、約30 Å あった²⁴、未処理のカーボンで は分極してもイオン吸着はほとんど起こらな いが、酸化を行なうと吸着するようになり、 その量は酸化時間の増大にしたがい増加す る.酸化処理を行なうと、表面に酸化物層が 形成され、この層のみがイオン吸着に関与す るためと思われる. イオンの取り込み量と カーボン電極の電位の関係についてはすでに 報告したが24、陽イオンの吸着の場合、電位 の減少に伴って吸着量は増大する.吸着した イオンのほとんどは電位を+1.0V程度に増大 させると脱着されるので. 吸脱着は電位変化 に対して可逆的であり,静電的な吸着機構に よりイオンは吸着されるものと考えられる. 一定の電位における吸着量は、水中において

Fig. 2 Electrochemical ion chromatograms of Li⁺ (1mM)-K⁺ (1mM): Glassy carbon powder was treated in air at 400°C for 4h. Stationary phase potentials were +0.25 V(a) and -0.25 V(b) vs. Ag/AgCl.

はアルカリ金属<アルカリ土類金属<プロト ンの順であり、カーボン表面との静電的吸着 力の大きさもこの順になるものと考えられる

イオン分離におよぼす電場の効果 Fig.2 に+0.25 Vおよび-0.25 VにおけるLi+, K+混合 試料溶液の電気化学的イオンクロマトグラム の例を示す.正電位では、陽イオンはカーボ ン表面にほとんど吸着しないため、溶離時間 にほとんど差がなく、分離したピークとして は観察されなかったが、負電位では、K+の溶 出が遅れ、バンド幅も大きくなっている、こ のことは、K+がカーボン表面に強く吸着して いることを示している. 高表面積カーボンの pzcは0V付近であることが報告されており[®]. この場合も pzc がそれに近い値であると仮定 すると, 固定相電位が正の時はカーボン表面 が正に、負の時は負に帯電していることにな る.したがって、イオンとカーボン表面の相 互作用が、静電的な吸着に基ずくものである と考えることができる. K+-Li+の分離度は -0.5 Vにおいて0.7であった、1価、2価金属 イオン間でも同様の傾向が見られ、分離度は カラム電位が負になるほど増大した.2-3価

Fig. 3 Electrochemical transfer of ions to stationary phase coated with the carbon powder

金属イオンはアルカリ金属イオンより大きな 大きな電位依存性を示した.

固定相表面の修飾による分離能の改善

さらに分離度を向上させるためには、表面の 化学修飾による理論段数の向上が必要となる と考えられる、このような修飾は、直接カー ボンの表面サイトと修飾基の間での化学結合 によっても行ないうるが、カーボン粒表面を 液膜で覆うことによっても可能であると思わ れる. Fig. 3にその原理を示す. この場合. イオンの移動相および固定相間での交換は. 近年発展してきたイオン移動ボルタモメト リーにより理解が可能である9,10. 油層として 負電位でも安定な、1,2-ジクロロエタンを選 び、分離度をより向上させるためにクラウン エーテル(ジベンゾ-18-クラウン-6)を溶解 させた. Fig. 4に得られたクロマトグラムを 示す. この修飾を行った固定相においても未 修飾の固定相と同様の電位依存性が観測され た、すなわち、固定相電位を正にするとアル カリ金属間の分離はほとんど達成されなかっ たが、負にすると保持時間が増大し分離度も 向上した.しかしながら、この系では、未修

> 飾の固定相に比べて分離 度の向上が見られ, K⁺-Li⁺の分離度は-0.25Vにお いて1.2であり, ほぼ分離 することができた.

4 結言

本法が,実用的な分析 法として発展するために は、さらにカラムの改良 が必要であるが,原理的 にはここに述べたような 方法により,電位を分離 パラメーターとするクロ マトグラフ法が可能であ ることが分かった.改良

Time / s

Fig. 4 Chromatograms for 10mMK+ and 10mM Li+: Stationary phase used; (a) activated carbon, (b) a+TPATPB (0.1M), and (c) b+ dibenzo-18-crown-6. Column length; 8cm. The potential of the stationary phase was -0.50V vs.Ag/AgCl.

の方向として、本研究で得られた知見をもと に考えると、(1)表面化学修飾によるイオン交 換基の導入、(2)イオノフォアを含む油層によ る分離が考えられる.とくに後者は、電場と イオノフォアを結び付けた新しい分離分析法 であり、今後さらに検討が必要であると考え る.

- T. Fujinaga and S. Kihara: Critiacl Reviews in Analytical Chemistry, 6, 223, 1977.
- T. Nagaoka, T. Fukunaga, T. Yoshino, I. Watanabe, T. Nakayama, S. Okazaki: Anal. Chem., 60, 2766 (1988).
- T. Nagaoka, Y. Uchida, K. Ogura: J. Chem. Soc., Faraday Trans. 1, 85, 3757 (1989).
- 4) 内田善久,長岡勉,小倉興太郎:分析化学,
 40,13 (1991)
- J. H. Strohl, K. L. Dunlap: Anal. Chem., 44, 2166 (1972).
- R. S. Eisinger, R. C. Alkire: J. Electrochem. Soc., 130, 85 (1983).
- T. Nagaoka, M. Fujimoto, H. Nakao and K. Ogura: J. Electroanal. Chem., 336, 45(1992).
- J. Koresh, A. Soffer: J. Electroanal. Chem., 147, 223 (1983).
- 9) 吉田善行, 木原壮林: ぶんせき, 472 (1987).
- 10) 千田 貢, 垣内 隆:"高分子機能電極", 高 分子錯体研究会編, p.216 (1983), (学会出 版センター)

文 献