酸性河川酢川の水中溶存物と河床沈殿物の元素組成*

堀 智孝^{*1}、金尾昌美^{*2}、長井正博^{*1}、谷口延子^{*1}、 杉山裕子^{*1}、杉山雅人^{*3}、高松武次郎^{*2}

[要旨]

強い酸性の原始海水が現在のように中性化された地球化学的な名残がいくつか 知られている。また、これに類する中和の過程は岩石の風化として現在も定常的 に進行し、余剰のH⁺が火成岩と反応して粘土が生成する。他方、人的活動の結果 による降水の酸性化が懸念されている。人類がこれまで、中性から酸性に向かう 水圏環境の変化を経験したことが無いからである。本研究は、火山性強酸性河川 の典型である酢川 (山形県)を取り上げ、その流路に沿って、水中溶存物および 河床沈殿物の元素組成を調査し、源流域の強い酸が次第に中和に向かう過程 (pH $1.5 \rightarrow 3.5$) で、主要・微量・痕跡元素がどの様に振舞うのかを考察したもので ある。観測した元素は、Al、B、Ba、Ca、Cl、Co、Cr、Cu、Fe、K、La、Mg、Mn、 NO₃-N、Ni、P、SO₄-S、Sc、Si、Sr、Ti、V、Y、Znである。なお、河川水中のAs、 Cd、Pb、Se、Moは、ICP 分光法の定量下限以下であった。

1.はじめに

天然水中の Al³⁺の毒性が憂慮されて いる [1]。人体の消化管はこのイオン を吸収しない仕組みになっているとは いえ、溶存態Alによる神経障害が深刻 に議論されている。Al³⁺の高い電荷密 度がこのイオンを典型的な"硬い酸" として働かせ、人体内で重要な役割を 果たすはずの"硬い塩基 PO₄³⁻"に強く 作用するというものである。他方、天 然水中にはケイ酸が含まれていて、こ れが Al³⁺に作用してアルミノケイ酸に 類縁の化合物を形成、これによって溶 存態Alの生体への取り込みが抑制され る事実も知られるようになった [2]。

近年、降水の酸性化の影響が森林破 壊として顕在化し、その対策が急がれ ている。これと並んで、湖沼水の酸性 化とそれに伴う堆積物からの各種化学 元素の溶出に関する議論が始まった [3]。

この中にあって、本研究は、火山性 酸性河川水の中和過程を逆に辿ること によって、降水の酸性化に付随する諸 現象を予見的に考察することを試みた ものである。この中和過程の観察に

^{*}陸水の環境化学的研究(第3報)。前報は、引用文献[28]参照。

^{*&}lt;sup>1</sup>京都大学大学院人間・環境学研究科 〒606-01 京都市左京区吉田、*²国立環境研究所土壌環境 研究室 〒305 茨城県つくば市小野川16-2、*³京都大学総合人間学部 〒606-01 京都市左京区 吉田

当って酢川(山形県)を選んだのは、古 くは吉村(信吉)、今野[4,5]、河西 [6,7]らによって、また近年では加藤 [8~12]によって、この水系が地理学 的、水文学的、生態学的、並びに地球 化学的に精査されていて、これらの成 果を基礎資料にすることができるから である。

2. 原始海水の中和過程と造床鉱物の風 化過程

原始海水の組成とその性質が、次第 に詳しく描かれるようになってきた [13]。約38億年と推定される年齢の変 成岩がグリーンランドで採取され、そ の源岩が堆積岩であったことから、こ の時期に海洋が既に存在していたと考 えられている。一方、地球の年齢は約 46億年と見積られているので、地球が できてから8億年以内に海洋が形成さ れたことになる。この時の海水は、水 の臨界温度(647 K)という高温である のみならず、初期大気に含有されてい たはずの塩酸を溶解していて、その酸 性度は0.4~0.5M HCl にも及んだと推 計されている。しかし、化学的な考察 から [14]、この高温高酸性の海水は地 表を覆っていた玄武岩や安山岩状ケイ 酸塩鉱物と反応して、比較的速やかに 現在の海洋環境に見られるような中性 条件に近づいたとされている。原始海 水で起こった激しい中和過程と本質的 に同様の過程は、現在も、岩石の風化 として進行していると考えてよい。風 Transactions of The Research Institute of (39) Oceanochemistry Vol. 10, No. 1, April. 1997

化を代表する変化「15~17」は、母岩 鉱物である長石 [CaAl,Si,O., NaAlSi₃0₈]、雲母 [K (Mg,Fe)₃ (AlSi₃0₁₀) (OH)₂]、カンラン石 [(Mg,Fe) SiO₄] な どが、水相中のItと反応し、代わって Ca²⁺、Na⁺、K⁺、Mg²⁺、Fe²⁺を放出しなが ら、粘土鉱物である白雲母 [KAl,Si,O, (OH),]、モンモリロナイト [Nay $(Al, Mg_{v/2})_{2}Si_{4}O_{10}$ (OH) $.xH_{2}O$]、葉ろう 石 [Al,Si₄0₁₀ (OH),]、カオリナイト [Al₄Si₄010 (OH)₈] に変化する過程であ る。すなわち、この過程の本質は、ケ イ酸塩(火成岩中)が水中(水圏)の H^{*}を取り込み、Al³⁺と新たな結合を形成 しながら、より難溶のケイ酸塩(粘土 鉱物中)へと形態を変えることである。 言い換えれば、水圏の底層に沈積した 多量の粘土は、水相中の膨大な余剰 H⁺ の貯留所である。そして、プレートの 動きによって海洋底の粘土が海塩と共 に沈み込み [18]、地熱によって灼熱さ れると、上述の反応は逆の方向に進行 して、粘土がマグマに混じると多量の H⁺が遊離されることになる。この一部 は火山ガス中のHCl として大気へ、ま た他の一部は温泉水中のHClやH_sSO₄と して地表を流れることになる。大局的 には、このケイ酸の性質に則った順逆 2つの反応によって、水圏と気圏のH⁺ が定常値に保たれることになる。

3. 無機酸性水域と生物相の相関

火山地帯の渓流・湖沼・温泉水は硫 酸や塩酸を高濃度で含んで強い酸性を 呈し、いわゆる無機酸性域を形成する。 このような水系が日本に多数存在する こともあって、この研究は本国で早く から大系的に進んでいる。

1934年、今野 [4, 5] は酢川 (pH 1.8) と須川 (pH 5.6) の流量を計測 し、これら両河川が水量比1:6で合流 して、pH 4.0~4.2となる様子を描いて いる。また、魚類の棲息限界はpH 5と 考え、この合流域に魚類が見つからな いことを紹介する一方で、恐山湖 (pH 3.2) で多数のウグイ Leuciscus hakonensis Cunterが棲息することを考 え合わせ、魚類の棲息には、pHの高低 もさることながらその値が一定してい ることが大事であると指摘している。 また、この河川水を水田に導くと、た とい石灰や木灰で中和しても、稲穂の 出方が悪くなるという事実を紹介して いる。また同年、石井は吾妻川 [19] に 魚類が棲息しない理由を解明する日的 を持って、同河川がpH 1.7であること を確かめるとともに、Al をはじめとす る11種の化学成分を測定し、また、こ の河川水を用いて魚類の斃死実験を 行っている。

河西と吉田[6]は、酸性河川と中性 河川の代表的な合流点を、国内に於い て6箇所選定し、各々の合流点でのpH の分布図を描くと共に、動物相と植物 相の変化を記録し、併せて、河川水は 混合しにくいこと、また、pH 4.7で水 酸化アルミニウムが沈殿することを報 じている。さらに河西[7]は、酢川の 流路に沿って、pHの変化と水生動物種の数の変化を調べている。

根来は、菅平大明神沢[20]と玉川 [21]の植物相を精査し、苔類の生育域 が河川水のpHに強く依存することを明 らかにした。上野[22]は、玉川の動 物相を調査して36種を同定したうえ で、動物の一般生存の限界はpH 4であ ろうと述べている。

近年になって、上條ら [23] は長瀬 川が中性化する過程 (pH 2.4→7.0) に 沿って、付着藻類に関する植生の変化 を調べている。また、Satakeら [24] は 久住山系赤川の植生を調査することと ならんで、苔類が含有する元素組成と 水質との関連および植物の成長を抑制 する酸性度と元素濃度を考察している。

4.酸性河川水の中性化処理

酸性河川水の生物相に対する毒性の 科学的解明が進展する中で、この毒性 を中和によって除去するための努力が なされている。

Arizumi [25] は、玉川温泉水 (pH 1) が地下浸透法で処理される場合を調査 し、毎秒 140 1 で湧出する酸性水が地 下浸透後にpH 4.1を示すことを確かめ ている。しかし、この処理後の水にAl³⁺ が溶出することは避けられないと述べ ている。また、入江 [26] は地下浸透 後の蔵王川の水を調査し、MnとFeの間 に強い相関があることを示している。

酸性水を中和するもう一つの方法は、
 石灰処理である。たとえば Rosseland
 (40) 海洋化学研究 第 10 巻第1号 平成9年4月

ら[27]は、この処理を行うとAl³⁺が 次第に無電荷となって縮合し、この縮 合態Alが魚のえらに吸着して、それら を死に至らしめると報じている。

5.酸性河川酢川の水中溶存物と河床沈 殿物の元素組成

加藤は精細な地勢図を基にして、酢 川-須川水系の体系的な水質調査を実 施[8,10,12]し、pH、SO₄-S、Ca、Fe の分布とその季節変化を捉えている。 本研究は、加藤の報告から酢川の流路 の特徴を詳しく習ったうえで、少量元 素から微量・痕跡元素に至るまでの各 元素の動態をCl⁻の濃度の関数として 調査し、その結果を地球化学的にまと めたものである。以下に、その詳細を 述べる。

5・1 酢川の地勢と採水点・・・酢川

は、竜山の爆裂火口底を源とし、蔵王 温泉水 (pH 1.56)、一度川 (pH 0.9~ 1.1)、二度川 (pH 0.9~1.0)、三度川 (pH 1.3 ~1.7) を合流して本流を形成 する、流程11.0 kmの典型的な酸性河 川[4,10]であって、その中流域で中 性の小河川水を加えながら、しかし依 然として強い酸性 (pH 2.0~3.0) を 保って流下し、蔵王川 (pH 3.5~4.5) [8, 26] と並んで須川に流入し、須川 を酸性にする [7]。このような pH 変化 を考慮した上で、本研究では酢川の流 路にそって7つの採水地点(番号SO、 00、10、12、20、30、60)を配した(図 1)。なお、図に示すように、三度川(採 水地点番号11)、酢川が合流する直前 の須川(同 SU)、酢川合流後の須川(同 80、90)、蔵王川(同 ZA)にも採水点 を設け、酢川を考察するための補助資 料を得ることとした。

図1. 酢川の流路及びそれに関連する地点に設けた採水点の位置と番号

Transactions of The Research Institute of (41) Oceanochemistry Vol. 10, No. 1, April. 1997 5・2 採水日と採水法ム 1993 年 9 月 23日(第1回)と1996 年 9 月 21日(第 2回)に、所定の各地点で試水11をポ リプロピレン(PP)製の瓶に採取し、冷 暗所に一時保存した。採水と同時に、 携帯用の測定器により、流水のpH、電 気電導度、水温を計測した。また、採 水地点では、流水が新しく移動させ沈 積させたと思われる河床沈殿物の、表 層約5 mmをPP製の匙ではぎ取り、PP 製バイアル瓶に保存した。

5・3 水中溶存物の元素分析・・・冷 暗所に保存した試水の約250 mlを分け 取り、ヌクレポアフィルター(0.4µm、 47 mm)でろ過をした。

ろ過をした試料に ICP 発光分光法 (Thermo Jarrel-Ash 社製 ICAP-61E Trace型)を適用して、Al、B、Ba、Be、 Ca, Co, Cr, Cu, Fe, K, La, Mg, Mn, Na、Ni、Sc、Sr、Ti、V、Y、Zn を定量 した。また、吸光光度法を適用して、P [F] と P [FA] 並びに Si [F] と Si [FA] を定量した。ここで、P [F] とSi [F] は、その定量操作とその原理を基にす ると [28]、それぞれ正リン酸 (PO₄) と 単量体ケイ酸(Si0。)の化学形態にあ るPとSiの定量値であると考えてよ い。また P [FA] と Si [FA] は、それ ぞれHC10,灰化処理およびアルカリ溶 融後に正リン酸および単量体ケイ酸と なるPとSiの定量値である「28]。

これと並行して、イオンクロマトグ ラフ法 (分離カラム:Dionex 社製 $AS1_2A$; 溶離液:2.7 mM $Na_2CO_3/0.3$ mM $NaHCO_3$)により、 SO_4 -SとCl⁻を定量した。

他方、ろ過を行わなかった試水につ いて、HClO₄灰化処理を行い、いわゆる 全リンP [A] を定量した [28]。

以上の結果を付表1にまとめて示した。

5・4 河床沈殿物の元素分析・・・常 法[29]に従って、イオン交換態[酢 酸緩衝溶液中に溶出される]元素と易 還元態[シュウ酸緩衝溶液で酸化鉄を 還元すると溶出される]元素に分画し、 それぞれの画分に含まれる元素を次の 操作によって定量した。

PP製バイアル瓶で持ち帰った沈殿物 試料は、まず激しくふりまぜて液相中 に分散させ、分散した部分のみをすば やく傾瀉法で別に用意した PP 製ビー カーに移し取り、これを凍結乾燥した。

乾燥した試料の約200 mg を精秤し、 PP 製遠沈管に分取する。蒸留水(20 ml)で2回洗浄したのち、2% 酢酸/酢 酸アンモニウム緩衝溶液(pH = 4.5) を20 ml 用いて2時間ふりまぜ、イオ ン交換態元素を抽出する。抽出を2回 行ない、合一した抽出物を5~10倍に 希釈したのち、ICP 発光分光分析に供 試した。

 イオン交換態元素を抽出した残渣を水 で洗浄した後、0.2 Mシュウ酸/シュウ 酸アンモニウム緩衝溶液 (pH = 3.0)
 を 20 ml 加えて 24 時間ふりまぜる。こ の操作を 2 回行ない、合一した抽出液
 (42) 海洋化学研究 第 10 巻第 1 号 平成9年4月 を 10~50 倍に希釈して、ICP 分析法に 供試した。

残渣を水洗したのち乾燥させて精秤 し、抽出操作の前後の減量から、可溶 化した酸化物の量を算出した。

以上の結果を付表2と3にまとめて 示した。

5・5 溶存化学元素の分布の特徴ム酢 川の流路に沿って設けた採水点、すな わち、源流域(採水点番号 00,10)→ 本流(同20~50)→須川への合流直前 (同 60) →合流直後(同 80)で観測し た pHの変化を図2(a)に示した。この 図には、同時に観測した Cl⁻と SO₄-Sの 変化を重ねている。図から分かるよう に、pHの目立った変化は採水点10、20、 60を境にして起り、この変化に相応し て Cl-と SO₄-Sが変化している。変化の 理由は判然としないが、この変化はこ れまでの研究で繰り返して観測されて いて [4, 7, 8, 10]、これらの観測点 が酢川の特徴を代表するものであるこ とが理解できる。

 図 2. [前葉] 酢川の流路に沿って(酢川源流域 00,10→本流→須川への合流直前 60→ 合流直後 80) で観測される流水中の(a) pH、SO₄-S、Cl⁻;(b) P [F]、P [FA]、 P [A];(c) Si [F];(d) Al、Ca、Fe、Mg、Na、K;(次ページに続く)(e) B、Mn; (f) Cr、V、Zn;(g) Be、La、Ni、Sc、Y;(h) Co、Cu、Tiの変化

Transactions of The Research Institute of (43) Oceanochemistry Vol. 10, No. 1, April. 1997

図2. [後葉]

1993 年 9 月の観測結果(付表1)か ら、その他の主要、微量及び痕跡元素 について同様のプロットを行い、図2 (b)~(h)に示した。採水点10、20、 60での変化に着目して、各元素の分布 を分類すると、ほとんどの元素は、pH、 Cl⁻、SO₄-Sの変化(図2a)に平行して 変化し、特殊な変化をするものはNi (図2g)とCo、Cu、Ti(図2h)である。 後者の元素群について、河川水中での 挙動に注目する必要がある。

また、図2bは河川水中におけるリン の化学形態を示している。リンは流路 に沿ってその濃度が大きく変るが、ど の観測点においても、P [F]、P [FA]、 P [A] の間に目立った差異がなく、一 般河川水と異なって、化学形態の違い が示差されることはない。すなわち、

ここで観測されたリンは、正リン酸態 であって、有機態リンやそれに類縁の リン化合物は存在せず、この水域での 微生物の活性も殆ど認められないこと が分かる。

の各元素濃度を、そこに含まれている Cl⁻で規格化すると、酸性河川水が一般 の中性河川水で希釈される効果を、そ の他の重要な地球化学的効果から予め 切り離すことができる。図3(b)~(h) は、この結果をまとめたものである。 ここで、縦軸のRX値は、ある着目元素 (X)の濃度の、観測地点番号(L)にお ける値と酢川源流域(観測地点 L = 10) における値の比、すなわち、RX=[X],/ [X]₁₌₁₀である。また、横軸は、源流域 観測地点 (L = 10) における Cl⁻ 濃度 を基準にした各観測点でのCl-、すなわ $5, RCl = [Cl] / [Cl]_{1=10}, Cbas.$ 述べるまでもなく、X = Cl⁻に対するプ ロットは、原点を通る傾き1(右下り) の直線である。この直線を基準にする と、図3に示した総数23本の曲線は、 その形の特徴から次の(i)~(v)の 5群に分類することができる。

(i) $X = Cl^-$ とする基準直線に一致 する直線(図3b)は、 $X = SO_4$ -Sをは じめとし、X = B、K、P[F]、Vで認め られる。これらの元素は、酢川の上流 域で付加供給されたその総量が、酢川 本流や下流域で一般の中性河川水や湧 出水で単純に希釈されだけであって、 この酸性域で化学的及び物理化学的に 付加されることも除去されることもな いことを意味している。

(ii) X = H⁺の直線(図 3c)は、上
 流域で基準直線より大きい傾きを示す
 が、中流域を過ぎると傾きは目立って
 小さくなる。上流域でCl⁻が希釈されて

単純に減少するのに対して、H⁺ は希釈 以上に大きく減少する。造床鉱物との 反応および一般中性河川水中のHCO₃⁻と の反応で、H+ が消費されることに因る と考えてよい。他方、中流域で鈍くな る。これは、河川水中の反応 HSO₄⁻ H⁺ + SO₄²⁻を通して H+ が供給されるこ とに因ると考えてよい。

(iii) X = Ba、Be、Laの直線(図3d、)
 は、上流域で小さい傾きで減少する。
 これらの元素が、酢川水を希釈している一般中性河川水にも十分に含まれているためである。

(iv) X = Ca、Mg、Fe、Mn、Na、Sc、
 Si [F]、Y、Zn、Al、Cr、Sr (図 3f、3g)
 は、基準直線に比べると、上に凸の曲
 線になる。すなわち、上流域での減少
 が、Cl⁻の減少より鈍く、中流域に至っ
 て、Cl⁻と同じ割合で減少する。上流域
 で、強い酸によって造床鉱物が風化溶
 解され、中流から下流域では単純な希
 釈が進むことになる。

(v) X = Co、Cu、Ni、Ti (図 3h) は、 釣鐘のような曲線を与える。すなわち、 これらの元素は、源流から少し離れた 地点までは一旦増加し、Rx 値は極大を 示したのち急激に減少する。Ti はこの 典型であって、上流域で造床鉱物の溶 解によって供給された Ti₄⁺ は水中の硫 酸や塩酸との錯形成によって安定に溶 存するが、中流域で pH が上昇すると、 Ti (OH)₄となって、水中から除去され ることになる。

Transactions of The Research Institute of (45) Oceanochemistry Vol. 10, No. 1, April. 1997

図3.酢川の上流から下流に向かってCl が一般河川水で希釈される割合(横軸:R = [Cl] L/[Cl]_{L=10})に対する、pH及びその他化学成分の減少の割合(縦軸:RX = [X]_L/[X] L=10)。ここで、(a) pH;(b) X = B, P [F], K,SO₄-S,V;(c) X = H⁺;(d) X = Ba, La, Be;(e) X = Ca, Mg, Mn, Fe, Na;(f) X = Sc,Si [F], Y, Zn;(g) X = Al, Cr, Sr;(h) X = Co, Cu, Ni, Ti である。

(46) 海洋化学研究 第10巻第1号 平成9年4月

5・7 河床沈殿物の元素組成・・・採 水地点で採取した河床沈殿物から、酢 酸/酢酸アンモニウム溶液中にイオン 交換反応に因って抽出される画分(付 表2)とシュウ酸/シュウ酸アンモニウ ム溶液中に酸化鉄の還元溶解とともに 抽出される画分(付表3)の各々につい て計測した元素組成を、採水地点を横 軸にとって、図4と図5に示した。前者 は、沈殿物試料の総重量に対する各元 素の重量を、また、後者は沈殿物中の 還元可溶化物の重量に対する各元素の 重量を求め、これらの値を採水点番号 に対してプロットしたものである。 図に示した結果は、水平方向に変化 の少ない曲線であって、河床沈殿物の 元素組成が酢川流域の地勢に強く依存 しないことが分かる。この中で僅かに 特徴のある変化を示すのは、B、Ca、Pb であるが、その他の元素は沈殿物の中 で、あるいは酸化鉄態沈殿物の中で一 定の割合を保っている。一見して、酢 川に沿った pH 1.5→3.2の全流域で、 共通した反応に因って溶存元素の沈殿 除去が起こっているように考えられる が、むしろこれは、上流域で生成した 沈殿物が中流から下流域に運ばれて分 散したものと考えるのがよい。なぜな

図 4. 河床沈殿物(1993.9 採取)から 0.2% 酢酸 / 酢酸アンムニウム緩衝溶液(pH=4.5) 中に、イオン交換態として抽出されてくる成分の元素濃度と採水地点との関係

Transactions of The Research Institute of (47) Oceanochemistry Vol. 10, No. 1, April. 1997

図5. 河床沈殿物(1993.9 採取)から0.2M シュウ酸/シュウ酸アンムニウム緩衝 溶液(pH=3.0)中に、酸化鉄の還元溶 解とともに抽出されてくる成分の元 素濃度と採水地点との関係

ら、水中溶存物の元素組成の変化は主 として、pH 1.5→2.0の上流域で起 こっていて、pH 2→3の中流や下流域 では単純な希釈による中性化が起こっ ているに過ぎないからである。 6.おわりに

以上のように、酸性河川水の中性化 に伴う種々の化学現象の主要なものの 一つは、pH 1.5→2.0で起こり、この 現象を観測するには、酢川が優れた研 究対象であることになる。しかし、こ れに続く、さらに高いpH領域での変化 を観測するには、実験室実験による元 素の除去と溶出過程の観察が必要であ る。酢川が流入してさらに中性化する 須川や最上川には、昨今の人的活動の 影響が大きく、この効果を排除した地 球化学的考察は困難に見える。

本研究の一部は文部省科学研究費補 助金基盤研究(07640802)の助成を得 て実施したものである。また、研究の 遂行に当たって、藤永太一郎京都大学 名誉教授から折々に重要な助言を受け ました。ここに謝意を表します。

引用文献

- [1] 例えば、J. Burgess: Man and the elements of groups 3 and 13, Chem. Soc. Rev., **1996**, 85-92.
- [2] (a) J. D. Birchall: The essentiality of silicon in biology, Chem. Soc. Rev., 1995, 351-357;

(b) J. D. Birchall, C. Exley,
J. S. Chappell, and M.J.
Phillips: Nature, 1989, 338;
(c) J. S. Chappell and J. D.
Birchall : Inorg. Chim. Acta,
153, 1-4 (1988).

(48) 海洋化学研究 第 10 巻第1号 平成9年4月

- [3] S. O. King, C. E. Mach, and P. L. Brezonik: Changes in trace metal concentrations in lake water and biota during experimental acidification of Little Rock Lake, Wisconsin, USA, Env. Pollu., 78, 9-18 (1992).
- [4] 今野義信:須川水の水素イオン濃、
 その生物、人文に及ぼす影響、地
 理学評論、103、95-407(1934).
- [5] 今野義信:山形県酢川及須川の研究、陸水雑、4,1-10 (1934).
- [6]河西芳一、吉田義信:酸性河川と 中性河川との合流点付近に於ける pH分布に就いて、陸水雑、9,159-167 (1939).
- [7]河西芳一:山形県酢川の動物相、陸水雑、10,114-127 (1940).
- [8]加藤武雄:蔵王山周辺河川の陸水
 学的研究、地理学評論、27、229-243 (1954).
- [9]加藤武雄:毒水の性格と災害-山
 形県須川水系-、地理、4、1135 1142 (1954).
- [10] 加藤武雄:須川水系に関する地球 化学的研究、山形大学紀要(自然 科学)、5,307-348 (1961).
- [11]加藤武雄:最上川水系酢川の溶存 物質流送作用についての二、三の 知見、陸水雑、29,11-18 (1968).
- [12]加藤武雄:蔵王火山周辺河川の水 文学的研究、山形大学紀要(自然 科学)、7,205-270 (1970).

Transactions of The Research Institute of (49) Oceanochemistry Vol. 10, No. 1, April. 1997

- [13] 例えば、松尾禎士:"地球の進化 (pp.1-33)"、「現代科学19 進化 の化学(江上不二夫編)」、岩波書 店、1979;"太陽系の一員としての 地球(pp.1-28)"、「地球化学(松 尾禎士監修」)、講談社サイエンティフィク、 1989.
- [14] 北野康:地球環境の化学、pp.55~96、裳華房、1984.
- [15] J. W. Moore and E. A. Moore: Environmental Chemistry, Academic Press, Inc., 1976; 岩 本振武(訳):環境理解のための基 礎化学、pp.274~294、東京化学 同人、1980
- [16] 一國雅巳:"ケイ酸塩の風化とその生成物(pp.6~18)"、「季刊化学総説4 土の化学」、日本化学会編、1989.
- [17] 加藤秀正:"土壌溶液 (pp.96~
 111)"、「季刊化学総説4 土の化
 学」、日本化学会編、1989.
- [18] 巽好幸:沈み込み帯のマグマ学、 東大出版会、1995.
- [19] 石井省一郎:吾妻川の水質汚濁に 就いて、陸水雑、3,83-86 (1934).
- [20] 根来健一郎: 菅平大明神沢酸性渓
 流の生物、陸水雑、8, 371-387
 (1938).
- [21] 根来健一郎:秋田県玉川に於ける Aplozia crenulata var. gracillimaの分布に関する一観 察、陸水雑、9,180-184 (1939).

- [22]上野益三:秋田県玉川の動物相の
 昭和14年夏季の状態、陸水雑、
 10,94-105(1940).
- [23] 上條裕規、渡部仁治、益子帰来
 也:強酸性河川長瀬川水系(福島
 県)の付着藻類植生、日生態会誌、
 24,147-152 (1974).
- [24] K. Satake, M. Nishikawa, and K. Shibata, Distribution of aquatic bryophytes in relation to water chemistry of the acid river Akagawa, Japan, Arch. Hydrobiol., 116, 299-311 (1989).
- [25] A. Arizumi : Investigation on the river water polluted with acidic hot spring water, Water Res., 7, 385-394 (1973).
- [26] 入江敏勝:酸性河川蔵王川の地球
 化学的研究、Jpn. J. Limnol.,
 37, 108-117 (1976).
- [27] B. O. Rosseland, I. A. Blakar,

A. Bulger, F. Kroglund, A. Kvellstad, E. Lydersen, D. H. Oughton, B. Salbu, M. Staurnes, and R. Vogt: The mixing zone between limed and acidic river waters --Complex aluminium chemistry and extreme toxicity for salmonids, Env. Poll., **78**, 3-8 (1992).

- [28] T. Hori, Y. Sugiyama, M. Kanao, M. Nagai, N. Taniguchi, M. Sugiyama, and T. Fujiaga.: Distribution of some chemical components in Lake Biwa under usual and unusual wet and drought conditions,1992-1995, Jpn. J. Limnol., 57, 183-197 (1996).
- [29] W. F. Pickering : Metal ion speciation -Soils and sediments, Ore Geology Rev., 1. 83-146 (1986).

付表 1. 酢川の流路(採水点番号 S0,00,10,12,20~60)及びそれに関連する地点(同番号 11,80,90,SU,ZA) で測定した河川水の電気伝導度、pH及び元素組成。白地と灰色地はそれぞれ 1993年 9月と 1996年 9月の観測 値。N.D. は定量下限以下。また、一印は観測しなかったことを示す。

	元素	Cond./	(mS/cm	F	H	H·/	/mM	SO,-5	S/ppm	C1/p	opm	Al/p	pm	B/p	pm	Ba/p	opb	Be/	ppb	Ca/	ppm	Co	ppb	Cr/	ppb	Cu	/ppb	Fe/	ppm	K/F	pm	La/p	ppb
	SO	-	16.13	-	1.56	-	27.5	-	963	-	479		191		1.40	-	28.2	-			91.5	112	N.D.	14	46.7	-	N.D.	-	36.6	-	36.5		-
	00		15.23	1.50	1.70	31.6	19.9	1250	908	508	444	188	184	1.33	1.30	50.4	26.2	6.5	-	83.1	89.7	N.D.	N.D.	71.1	47.4	10.9	N.D.	43.2	28.9	36.9	34.9	45.9	-
	10	-	15.32	1.50	1.59	31.6	25.7	1350	1000	530	490	216	208	1.37	1.35	53.8	28.4	7.4		89.2	104	9.4	N.D.	99.6	63.4	14.7	N.D.	53.7	42.0	43.3	38.5	50.8	-
	(11)	-	9.76	-	1.71	-	19.5	-	586	14	272	-	95.2		1.01	-	28.7			-	74.3		N.D.		22.9	. . .	N.D.		20.0	-	17.6	-	-
	12	-	13.91	·	1.60	-	25.1	-	906	-	433		189	-	1.30	- e - 1	28.7	-	1. L. I	- 12 -	101		N.D.	14	56.8		N.D.		40.1	-	34.8	-	- S
	20	-	7.52	2.03	1.81	9.30	15.5	504	661	190	312	98.0	160	0.54	0.94	36.9	24.0	4.4	-	63.3	95.5	15.6	13.3	49.5	49.2	26.2	14.2	32.8	40.8	14.8	24.8	24.5	
	30		5.66	2.11	2.09	7.80	8.13	454	535	167	254	93.8	135	0.49	0.76	37.1	22.6	4.1		63.2	87.6	18.1	14.1	47	42.3	28.4	14.6	32.3	34.3	13.5	19.9	24.3	-
号	40		Sec.	2.28	S	5.30	-	404		146	1.	84.2	-	0.43		36.8	-	3.8		62.7	47.	18.1	1.100 - 1.100 1.100 - 1.100	42.9	·	29.1	-	31.1		11.9	-	22.7	3 - T
	50	-		2.33	. ÷	4.7	-	401		152	-	82.4	-	0.44		39.3	-	4.1		67.2		17.7	-	42.1	· • .	30.2	-	31		13.7		22.5	-
	60	-	4.17	2.37	2.23	4.3	5.89	387	464	150	201	81.6	109	0.44	0.61	38.5	21.8	4.4		67.2	91.3	20.3	13.0	43.3	33.6	29.9	17.1	31.8	27.1	13.6	17.1	21.8	1. •
	80	-		3.35		0.4	-	61.4		31	1.	12.3	-	0.08		29.3		1.9	•	21.8	-	5.3		8.15		10.6	-	3.88		3.6	-	8.9	-
	90		0.655	-	3.23	-	0.59	-	68.1		42.5	-	15.6	1	0.11		23.2	-	and the second		23.5	-	5.0	-	5.0	-	N.D.		3.54	-	4.8	-	-
	SU	-	192.8		7.00		0.0001	÷.,	7.61	-	23.7		0.04	-	0.05	-	18.8	-	1		14.8	12	N.D.	12	N.D.	- 14	N.D.	~	N.D.	~	3.2	-	
	ZA	-	0.508	-	3.17	-	0.68		63.8	-	4.9		15.0	-	N.D.		21.7			-	19.0		18.6	-	5.0		N.D.		1.44	-	2.5	-	
定	量下限											0.0	02	0.0	02	10)			0.	02		5		5	1	10	0.	01		1		
				•		•						•			2															0			
	元素	Mg	/ppm	Mn	/ppm	NO3-	N/ppb	Na/	ppm	Ni/	ррЬ	P[F]/	ppm	P[FA]/ppm	P[A]/	ppm	Sc/	ppb	Si[F]	/ppm	Si[FA]/ppm	Sr/j	opm	Ti/	/ppb	V/	ррь	Y/I	opb	Zn/p	ррb
	元素 S0	Mg.	/ppm 40.6	Mn	/ppm 1.87	NO,-	N/ppb N.D.	Na/	ppm 42.2	Ni/	ppb N.D.	P[F]/	ppm 1.22	P[FA]/ppm 1.25	P[A]/	ppm 1.34	Sc/	ppb 37.3	Si[F]	/ppm 76 .7	Si[FA -	.]/ppm 77.5	Sr/j -	opm 0.520	Ti/	ppb N.D.	/	ррь 206	Y/I	opb 33.0	Zn/j	ppb 218
	元素 S0 00	Mg. - 39.0	/ppm 40.6 38.5	Mn. - 2.04	/ppm 1.87 1.76	NO ₃ -	N/ppb N.D. N.D.	Na/ - 41.6	ppm 42.2 41.2	Ni/ - 40.4	ppb N.D. N.D.	P(F)/ - 1.29	ppm 1.22 1.16	P[FA - 1.05)/ppm 1.25 1.23	P[A]/ - 1.09	ppm 1.34 1.31	Sc/ - 41.5	ppb 37.3 35.8	Si[F] - 72.2	/ppm 76.7 73.6	Si[FA - -	/ppm 77.5 74.7	Sr/j - 0.567	opm 0.520 0.500	Ti/ - 13.1	ppb N.D. N.D.	 235	206 190	Y/I 38.7	33.0 31.2	Zn/ <u>r</u> - 251	218 213
	元素 S0 00 10	Mg - 39.0 45.3	40.6 38.5 43.7	Mn 2.04 2.47	/ppm 1.87 1.76 1.99	NO3-	N/ppb N.D. N.D. N.D.	Na/ - 41.6 49.2	ppm 42.2 41.2 45.6	Ni/ 40.4 48.2	ppb N.D. N.D. N.D.	P[F]/ - 1.29 1.70	ppm 1.22 1.16 1.43	P[FA 1.05 1.25	/ppm 1.25 1.23 1.41	P[A]/ 1.09 1.30	ppm 1.34 1.31 1.57	Sc/ - 41.5 47.6	ppb 37.3 35.8 39.2	Si[F] 72.2 71.5	/ppm 76.7 73.6 73.0	Si[FA - - -	.]/ppm 77.5 74.7 74.2	Sr/ - 0.567 0.646	0.520 0.500 0.581	Ti/ - 13.1 46.7	^{ppb} N.D. N.D. 15.3	- 235 293	206 190 234	Y/J 38.7 44.1	33.0 31.2 34.1	Zn/J 251 281	218 213 238
	元素 S0 00 10 (11)	Mg 39.0 45.3	40.6 38.5 43.7 29.0	Mn 2.04 2.47	/ppm 1.87 1.76 1.99 1.39	NO3-	N/ppb N.D. N.D. N.D. N.D.	Na/ 41.6 49.2	ppm 42.2 41.2 45.6 31.0	Ni/ 40.4 48.2	ppb N.D. N.D. N.D. N.D.	P[F]/ 1.29 1.70	ppm 1.22 1.16 1.43 0.686	P[FA 1.05 1.25	/ppm 1.25 1.23 1.41 0.76	P[A]/ 1.09 1.30	ppm 1.34 1.31 1.57 0.856	Sc/ - 41.5 47.6	ppb 37.3 35.8 39.2 19.4	Si[F] 72.2 71.5	/ppm 76.7 73.6 73.0 68.3	Si(FA - - -	/ppm 77.5 74.7 74.2 68.1	Sr/j - 0.567 0.646	0.520 0.500 0.581 0.273	Ti/ 13.1 46.7	ppb N.D. N.D. 15.3 6.32	V/ 235 293	206 190 234 96.2	Y/I 38.7 44.1	33.0 31.2 34.1 20.2	Zn/r 251 281	218 213 238 134
	元素 S0 00 10 (11) 12	Mg 39.0 45.3	40.6 38.5 43.7 29.0 41.5	Mn 2.04 2.47	/ppm 1.87 1.76 1.99 1.39 1.91	NO3-	N/ppb N.D. N.D. N.D. N.D. N.D.	Na/ 41.6 49.2	ppm 42.2 41.2 45.6 31.0 43.8	Ni/ 40.4 48.2	ppb N.D. N.D. N.D. N.D. N.D.	P[F]/ 1.29 1.70 -	ppm 1.22 1.16 1.43 0.686 1.27	P[FA 1.05 1.25	/ppm 1.25 1.23 1.41 0.76 1.33	P[A]/ 1.09 1.30 -	ppm 1.34 1.31 1.57 0.856 1.42	Sc/ 41.5 47.6	ppb 37.3 35.8 39.2 19.4 36.0	Si[F] 72.2 71.5	/ppm 76.7 73.6 73.0 68.3 72.9	Si[FA - - - -	/ppm 77.5 74.7 74.2 68.1 73.7	Sr/j - 0.567 0.646 -	0.520 0.500 0.581 0.273 0.529	Ti/ 13.1 46.7	N.D. N.D. 15.3 6.32 20.0	 235 293 	206 190 234 96.2 209	Y/J 38.7 44.1	33.0 31.2 34.1 20.2 32.1	Zn/J 251 281	218 213 238 134 246
	元素 S0 00 10 (11) 12 20	Mg, 39.0 45.3 - 25.8	40.6 38.5 43.7 29.0 41.5 40.6	Mn 2.04 2.47 - 1.44	/ppm 1.87 1.76 1.99 1.39 1.91 1.93	NO3-	N/ppb N.D. N.D. N.D. N.D. N.D. N.D.	Na/ 41.6 49.2 - 24.9	ppm 42.2 41.2 45.6 31.0 43.8 41.6	Ni/ 40.4 48.2 - 40.6	ppb N.D. N.D. N.D. N.D. N.D. 11.6	P[F]/ - 1.29 1.70 - - 0.660	ppm 1.22 1.16 1.43 0.686 1.27 0.9	P[FA 1.05 1.25 - - 0.520	/ppm 1.25 1.23 1.41 0.76 1.33 1.02	P[A]/ 1.09 1.30 - 0.490	ppm 1.34 1.31 1.57 0.856 1.42 1.06	Sc/ 41.5 47.6 - 24.0	900 37.3 35.8 39.2 19.4 36.0 32.8	Si[F] 72.2 71.5 52.2	/ppm 76.7 73.6 73.0 68.3 72.9 69.2	Si[FA - - - - -	77.5 74.7 74.2 68.1 73.7 69.1	Sr/j 0.567 0.646 - 0.325	0.520 0.500 0.581 0.273 0.529 0.454	Ti/ 13.1 46.7 - 40.0	N.D. N.D. 15.3 6.32 20.0 62.6	V/ 235 293 - 118	206 190 234 96.2 209 165	Y/1 38.7 44.1 - 24.1	33.0 31.2 34.1 20.2 32.1 30.1	Zn/ <u>r</u> 251 281 - 144	218 213 238 134 246 196
	元素 S0 00 10 (11) 12 20 30	Mg 39.0 45.3 - 25.8 25.2	40.6 38.5 43.7 29.0 41.5 40.6 35.8	Mn 2.04 2.47 - 1.44 1.39	/ppm 1.87 1.76 1.99 1.39 1.91 1.93 1.66	NO,-	N/ppb N.D. N.D. N.D. N.D. N.D. N.D. N.D.	Na/ 41.6 49.2 - 24.9 24.0	42.2 41.2 45.6 31.0 43.8 41.6 35.2	Ni/ 40.4 48.2 - 40.6 44.5	ppb N.D. N.D. N.D. N.D. 11.6 12.2	P[F]/ 1.29 1.70 - 0.660 0.560	ppm 1.22 1.16 1.43 0.686 1.27 0.9 0.733	P[FA 1.05 1.25 - 0.520 0.480	/ppm 1.25 1.23 1.41 0.76 1.33 1.02 0.887	P[A]/ 1.09 1.30 - 0.490 0.430	ppm 1.34 1.31 1.57 0.856 1.42 1.06 0.938	Sc/ 41.5 47.6 - 24.0 22.8	ppb 37.3 35.8 39.2 19.4 36.0 32.8 28.1	Si[F] 72.2 71.5 52.2 52.0	/ppm 76.7 73.6 73.0 68.3 72.9 69.2 62.0	Si[FA - - - - - -	//ppm 77.5 74.7 74.2 68.1 73.7 69.1 62.5	Sr/j 0.567 0.646 - 0.325 0.315	0.520 0.500 0.581 0.273 0.529 0.454 0.404	Ti/ 13.1 46.7 40.0 35.1	ppb N.D. 15.3 6.32 20.0 62.6 52.3	V/j 235 293 - 118 110	206 190 234 96.2 209 165 132	Y/1 38.7 44.1 24.1 23.4	33.0 31.2 34.1 20.2 32.1 30.1 26.2	Zn/r 251 281 - 144 141	218 213 238 134 246 196 166
	元素 S0 00 10 (11) 12 20 30 40	Mg 39.0 45.3 - 25.8 25.2 23.9	40.6 38.5 43.7 29.0 41.5 40.6 35.8	Mn 2.04 2.47 - 1.44 1.39 1.40	/ppm 1.87 1.76 1.99 1.39 1.91 1.93 1.66	NO ₃ -	N/ppb N.D. N.D. N.D. N.D. N.D. N.D. N.D.	Na/ 41.6 49.2 - 24.9 24.0 22.5	42.2 41.2 45.6 31.0 43.8 41.6 35.2	Ni/ 40.4 48.2 - 40.6 44.5 43.8	ppb N.D. N.D. N.D. N.D. 11.6 12.2	P(F)/ 1.29 1.70 - 0.660 0.560 0.580	ppm 1.22 1.16 1.43 0.686 1.27 0.9 0.733	P[FA 1.05 1.25 - 0.520 0.480 0.450	/ppm 1.25 1.23 1.41 0.76 1.33 1.02 0.887	P[A]/ - 1.09 1.30 - 0.490 0.490 0.430 0.040	ppm 1.34 1.31 1.57 0.856 1.42 1.06 0.938	Sc/ 41.5 47.6 - 24.0 22.8 20.5	ppb 37.3 35.8 39.2 19.4 36.0 32.8 28.1	Si[F] 72.2 71.5 52.2 52.0 49.6	/ppm 76.7 73.6 73.0 68.3 72.9 69.2 62.0	Si[FA - - - - - - -	//ppm 77.5 74.7 74.2 68.1 73.7 69.1 62.5	Sr/j 0.567 0.646 - 0.325 0.315 0.296	0.520 0.500 0.581 0.273 0.529 0.454 0.404	Ti/ 13.1 46.7 40.0 35.1 25.6	ppb N.D. 15.3 6.32 20.0 62.6 52.3	V/ 235 293 - 118 110 97.4	206 190 234 96.2 209 165 132	Y/1 38.7 44.1 24.1 23.4 22.7	33.0 31.2 34.1 20.2 32.1 30.1 26.2	Zn/r 251 281 - 144 141 136	218 213 238 134 246 196 166
一号	元素 S0 00 10 (11) 12 20 30 40 50	Mg 39.0 45.3 - 25.8 25.2 23.9 24.5	/ppm 40.6 38.5 43.7 29.0 41.5 40.6 35.8	Mn 2.04 2.47 - 1.44 1.39 1.40 1.50	/ppm 1.87 1.76 1.99 1.39 1.91 1.93 1.66	NO,	N/ppb N.D. N.D. N.D. N.D. N.D. N.D.	Na/ 41.6 49.2 - 24.9 24.0 22.5 27.3	42.2 41.2 45.6 31.0 43.8 41.6 35.2	Ni/ 40.4 48.2 - 40.6 44.5 43.8 46.5	ppb N.D. N.D. N.D. N.D. 11.6 12.2	P(F)/ 1.29 1.70 - 0.660 0.560 0.580 0.580	ppm 1.22 1.16 1.43 0.686 1.27 0.9 0.733	P[FA 1.05 1.25 - 0.520 0.480 0.450 0.360)/ppm 1.25 1.23 1.41 0.76 1.33 1.02 0.887	P[A]/ - 1.09 1.30 - 0.490 0.430 0.430 0.040 0.380	ppm 1.34 1.31 1.57 0.856 1.42 1.06 0.938	Sc/ 41.5 47.6 - 24.0 22.8 20.5 20.2	ppb 37.3 35.8 39.2 19.4 36.0 32.8 28.1	Si[F] 72.2 71.5 52.2 52.0 49.6 49.7	/ppm 76.7 73.6 73.0 68.3 72.9 69.2 62.0	Si (FA - - - - - - - - - - -	//ppm 77.5 74.7 74.2 68.1 73.7 69.1 62.5	Sr/j 0.567 0.646 - - 0.325 0.315 0.296 0.307	0.520 0.520 0.500 0.581 0.273 0.273 0.229 0.454 0.404	Ti/ 13.1 46.7 40.0 35.1 25.6 24.2	(ppb) N.D. 15.3 6.32 20.0 62.6 52.3	V/ 235 293 - 118 110 97.4 94.0	206 190 234 96.2 209 165 132	Y/1 38.7 44.1 - 24.1 23.4 22.7 23.4	33.0 31.2 34.1 20.2 32.1 30.1 26.2	Zn/r 251 281 - 144 141 136 133	218 213 238 134 246 196 166
	元 秦 S0 00 10 (11) 12 20 30 40 50 60	Mg, 39.0 45.3 - 25.8 25.2 23.9 24.5 24.5	/ppm 40.6 38.5 43.7 29.0 41.5 40.6 35.8 - - - -	Mn 2.04 2.47 - 1.44 1.39 1.40 1.50 1.51	/ppm 1.87 1.76 1.99 1.39 1.91 1.93 1.66 - 1.38	NO,	N/ppb N.D. N.D. N.D. N.D. N.D. N.D. N.D.	Na/ 41.6 49.2 - 24.9 24.0 22.5 27.3 27.1	42.2 41.2 45.6 31.0 43.8 41.6 35.2 - 36.9	Ni/ 40.4 48.2 - 40.6 44.5 43.8 46.5 47.4	ppb N.D. N.D. N.D. N.D. 11.6 12.2 13.1	P[F]/ 1.29 1.70 - 0.660 0.560 0.580 0.502 0.500	(ppm) 1.22 1.16 1.43 0.686 1.27 0.9 0.733 - - 0.530	P[FA 1.05 1.25 - 0.520 0.480 0.450 0.350)/ppm 1.25 1.23 1.41 0.76 1.33 1.02 0.887 	P[A]/ - 1.09 1.30 - 0.490 0.430 0.430 0.040 0.380 0.370	ppm 1.34 1.31 1.57 0.856 1.42 1.06 0.938 - - 0.660	Sc/ 41.5 47.6 - 24.0 22.8 20.5 20.2 20.5	ppb 37.3 35.8 39.2 19.4 36.0 32.8 28.1 - - 22.1	Si[F] 72.2 71.5 52.2 52.0 49.6 49.7 49.6	/ppm 76.7 73.6 73.0 68.3 72.9 69.2 62.0 - 54.5	Si[FA - - - - - - - - -	1/ppm 77.5 74.7 74.2 68.1 73.7 69.1 62.5 - 51.3	Sr/j 0.567 0.646 - - 0.325 0.315 0.296 0.307 0.307	0.520 0.520 0.581 0.273 0.529 0.454 0.404	Ti/ 13.1 46.7 - 40.0 35.1 25.6 24.2 20.6	^{/ppb} N.D. 15.3 6.32 20.0 62.6 52.3 - - - 30.6	V/ 235 293 - 118 110 97.4 94.0 92.8	206 190 234 96.2 209 165 132 - 101	Y/1 38.7 44.1 24.1 23.4 22.7 23.4 22.7	33.0 31.2 34.1 20.2 32.1 30.1 26.2 - 21.1	Zn/r 251 281 - 144 141 136 133 133	218 213 238 134 246 196 166 - 142
 号	元素 S0 00 10 (11) 12 20 30 40 50 60 80	Mg, 39.0 45.3 25.8 25.2 23.9 24.5 24.5 6.22	40.6 38.5 43.7 29.0 41.5 40.6 35.8 - 30.4	Mn 2.04 2.47 - 1.44 1.39 1.40 1.50 1.51 0.301	/ppm 1.87 1.76 1.99 1.39 1.91 1.93 1.66 - - 1.38 -	NO,	N/ppb N.D. N.D. N.D. N.D. N.D. N.D. - - - - - - - - - - - - - - - - - -	Na/ 41.6 49.2 - 24.9 24.0 22.5 27.3 27.1 15.6	222 41.2 45.6 31.0 43.8 41.6 35.2 - 36.9 -	Ni/ 40.4 48.2 - 40.6 44.5 43.8 46.5 47.4 15.4	ppb N.D. N.D. N.D. 11.6 12.2 13.1	P[F]/ 1.29 1.70 - 0.660 0.560 0.580 0.502 0.500 0.056	(ppm) 1.22 1.16 1.43 0.686 1.27 0.9 0.733 - - 0.530	P[FA 1.05 1.25 - 0.520 0.480 0.450 0.360 0.350 0.034)/ppm 1.25 1.23 1.41 0.76 1.33 1.02 0.887 - -	P[A]/ - 1.09 1.30 - 0.490 0.430 0.430 0.430 0.380 0.370 0.112	ppm 1.34 1.31 1.57 0.856 1.42 1.06 0.938 - - 0.660 -	Sc/ 41.5 47.6 - 24.0 22.8 20.5 20.2 20.5 N.D.	ppb 37.3 35.8 39.2 19.4 36.0 32.8 28.1 - - 22.1	Si[F] 72.2 71.5 52.2 52.0 49.6 49.7 49.6 17.4	/ppm 76.7 73.6 73.0 68.3 72.9 69.2 62.0	Si[FA - - - - - - - - - -	//ppm 77.5 74.7 74.2 68.1 73.7 69.1 62.5 - 51.3	Sr/j 0.567 0.646 - - 0.325 0.315 0.296 0.307 0.307 0.307	0.520 0.500 0.581 0.273 0.529 0.454 0.404	Ti/ 13.1 46.7 - 40.0 35.1 25.6 24.2 20.6 N.D.	/ppb N.D. 15.3 6.32 20.0 62.6 52.3 - 30.6	V/ 235 293 - 118 110 97.4 94.0 92.8 12.3	206 190 234 96.2 209 165 132 - 101	Y/1 38.7 44.1 24.1 23.4 22.7 23.4 22.7 N.D.	33.0 31.2 34.1 20.2 32.1 30.1 26.2 21.1	Zn/r 251 281 - 144 141 136 133 133 29.4	218 213 238 134 246 196 166 - 142
	元素 S0 00 10 (11) 12 20 30 40 50 60 80 90	Mg 39.0 45.3 - 25.8 25.2 23.9 24.5 24.5 6.22 -	(ppm) 40.6 38.5 43.7 29.0 41.5 40.6 35.8 - - 30.4 - 7.00	Mn 2.04 2.47 - 1.44 1.39 1.40 1.50 1.51 0.301	/ppm 1.87 1.76 1.99 1.39 1.91 1.93 1.66 - 1.38 - 0.274	NO,-	N/ppb N.D. N.D. N.D. N.D. N.D. N.D. N.D. - - - - - - - - - - - - 9.0	Na/ 41.6 49.2 24.9 24.0 22.5 27.3 27.1 15.6	ppm 42.2 41.2 45.6 31.0 43.8 41.6 35.2 - - 36.9 - 19.9	Ni/ 40.4 48.2 - 40.6 44.5 43.8 46.5 47.4 15.4	ppb N.D. N.D. N.D. N.D. 11.6 12.2 - 13.1 - 6.0	P[F]/ 1.29 1.70 - 0.660 0.560 0.580 0.502 0.500 0.056 -	ppm 1.22 1.16 1.43 0.686 1.27 0.9 0.733 - 0.530 - 0.083	P[FA 1.05 1.25 - 0.520 0.480 0.450 0.360 0.350 0.034 -	/ppm 1.25 1.23 1.41 0.76 1.33 1.02 0.887 - 0.691 - 0.320	P[A]/ - 1.09 1.30 - 0.490 0.430 0.040 0.380 0.370 0.112 -	ppm 1.34 1.31 1.57 0.856 1.42 1.06 0.938 - - 0.660 - 0.546	Sc/ 41.5 47.6 - 24.0 22.8 20.5 20.2 20.5 N.D.	ppb 37.3 35.8 39.2 19.4 36.0 32.8 28.1 - - 22.1 N.D.	Si[F] 72.2 71.5 52.2 52.0 49.6 49.7 49.6 17.4	/ppm 76.7 73.6 73.0 68.3 72.9 69.2 62.0 - 54.5 - 18.2	Si[FA - - - - - - - - - - - - - -	.//ppm 77.5 74.7 74.2 68.1 73.7 69.1 62.5 51.3 - 15.9	Sr/j 0.567 0.646 - - 0.325 0.315 0.296 0.307 0.307 0.105 -	0.520 0.500 0.581 0.273 0.529 0.454 0.404 	Ti 13.1 46.7 40.0 35.1 25.6 24.2 20.6 N.D.	(ppb) N.D. 15.3 6.32 20.0 62.6 52.3 - 30.6 - N.D.	V/ 235 293 - 118 110 97.4 94.0 92.8 12.3	206 190 234 96.2 209 165 132 - 101 - N.D.	Y/1 38.7 44.1 24.1 23.4 22.7 23.4 22.7 N.D.	33.0 31.2 34.1 20.2 32.1 30.1 26.2 - 21.1 - N.D.	Zn/r 251 281 - 144 141 136 133 133 29.4 -	218 213 238 134 246 196 166 - 142 - 39.9
	元素 S0 00 10 (11) 12 20 30 40 50 60 80 90 SU	Mg 39.0 45.3 - 25.8 25.2 23.9 24.5 24.5 6.22 -	(ppm) 40.6 38.5 43.7 29.0 41.5 40.6 35.8 - - 30.4 - 7.00 3.13	Mn 2.04 2.47 - 1.44 1.39 1.40 1.50 1.51 0.301 -	/ppm 1.87 1.76 1.99 1.91 1.93 1.66 - 1.38 - 0.274 N.D.	NO,-	N/ppb N.D. N.D. N.D. N.D. N.D. N.D. - - - 9.0 562	Na/ 41.6 49.2 24.9 24.0 22.5 27.3 27.1 15.6	22.2 41.2 45.6 31.0 43.8 41.6 35.2 - 36.9 - 19.9 19.5	Ni/ 40.4 48.2 40.6 44.5 43.8 46.5 47.4 15.4	ppb N.D. N.D. N.D. N.D. 11.6 12.2 - 13.1 - 6.0 N.D.	P[F]/ 1.29 1.70 - 0.660 0.560 0.580 0.502 0.500 0.056 - -	ppm 1.22 1.16 1.43 0.6866 1.27 0.9 0.733 - 0.530 - 0.083 0.04	P[FA 1.05 1.25 - 0.520 0.480 0.450 0.360 0.360 0.350 0.034 -	//ppm 1.25 1.23 1.41 0.76 1.33 1.02 0.887 - 0.691 - 0.320 0.309	P[A]/ - 1.09 1.30 - 0.490 0.430 0.040 0.380 0.370 0.112 -	ppm 1.34 1.31 1.57 0.856 1.42 1.06 0.938 - - 0.660 - 0.546 0.414	Sc/ 41.5 47.6 - 24.0 22.8 20.5 20.2 20.5 N.D. -	ppb 37.3 35.8 39.2 19.4 36.0 32.8 28.1 - 22.1 N.D. N.D. N.D.	Si[F] 72.2 71.5 52.2 52.0 49.6 49.7 49.6 17.4	/ppm 76.7 73.6 73.0 68.3 72.9 69.2 62.0 - 54.5 - 18.2 7.87	Si[FA - - - - - - - - - - - - - - -	1/ppm 77.5 74.7 74.2 68.1 73.7 69.1 62.5 51.3 - 15.9 6.07	Sr/j 0.567 0.646 - - 0.325 0.315 0.296 0.307 0.307 0.307 0.105 -	2000 0.520 0.520 0.581 0.273 0.529 0.454 0.404 - - - - - - - - - - - - - - - - - -	Ti 13.1 46.7 40.0 35.1 25.6 24.2 20.6 N.D.	(ppb) N.D. 15.3 6.32 20.0 62.6 52.3 30.6 - N.D. N.D.	V/ 235 293 - 118 110 97.4 94.0 92.8 12.3 -	206 190 234 96.2 209 165 132 - 101 - N.D. N.D.	Y/j 38.7 44.1 24.1 23.4 22.7 23.4 22.7 N.D.	33.0 31.2 34.1 20.2 32.1 30.1 26.2 - 21.1 - N.D. N.D.	Zn/r 251 281 - 144 141 136 133 133 29.4 -	218 213 238 134 246 196 166 - 142 - 39.9 N.D.
一	元素 S0 00 10 (11) 12 20 30 40 50 60 80 90 SU ZA	Mg 39.0 45.3 - 25.8 25.2 23.9 24.5 24.5 6.22 - -	(ppm) 40.6 38.5 43.7 29.0 41.5 40.6 35.8 - - 30.4 - 7.00 3.13 4.64	Mn 2.04 2.47 - 1.44 1.39 1.40 1.50 1.51 0.301 - -	/ppm 1.87 1.76 1.99 1.91 1.93 1.66 -	NO ₃ -	N/ppb N.D. N.D. N.D. N.D. N.D. N.D. - - N.D. - 9.0 562 15.0	Na/ 41.6 49.2 - 24.9 24.0 22.5 27.3 27.1 15.6 -	22.2 41.2 45.6 31.0 43.8 41.6 35.2 - 36.9 - 19.9 19.5 7.40	Ni/ 40.4 48.2 40.6 44.5 43.8 46.5 47.4 15.4	ppb N.D. N.D. N.D. 11.6 12.2 - - - - - - - - - - - - - - - - - -	P(F)/ 1.29 1.70 - 0.660 0.560 0.580 0.502 0.500 0.056 - - -	ppm 1.22 1.16 1.43 0.6866 1.27 0.9 0.733 - 0.530 - 0.083 0.04 N.D.	P[FA 1.05 1.25 0.520 0.480 0.450 0.360 0.350 0.034)/ppm 1.25 1.23 1.41 0.76 1.33 1.02 0.887 - 0.691 - 0.320 0.309 0.309 0.309	P[A]/ - 1.09 1.30 - 0.490 0.430 0.430 0.430 0.430 0.370 0.112 - -	ppm 1.34 1.31 1.57 0.856 1.42 1.06 0.938 - 0.660 - 0.546 0.414 -	Sc/ 41.5 47.6 - 24.0 22.8 20.5 20.2 20.5 N.D. -	ppb 37.3 35.8 39.2 19.4 36.0 32.8 28.1 - - 22.1 - N.D. N.D. N.D.	Si[F] 72.2 71.5 52.2 52.0 49.6 49.7 49.6 17.4	/ppm 76.7 73.6 73.0 68.3 72.9 69.2 62.0 - 54.5 - 18.2 7.87 25.2	Si(FA - - - - - - - - - - - - - - - - - - -	//ppm 77.5 74.7 74.2 68.1 73.7 69.1 62.5 - 51.3 - 15.9 6.07 21.9	Sr/j 0.567 0.646 - 0.325 0.315 0.296 0.307 0.307 0.307 0.105 - -	2pm 0.520 0.500 0.581 0.273 0.529 0.454 0.404 - - - 0.348 - 0.117 0.075 0.102	Ti/ 13.1 46.7 40.0 35.1 25.6 24.2 20.6 N.D.	(ppb) N.D. 15.3 6.32 20.0 62.6 52.3 30.6 - - N.D. N.D. N.D. N.D.	V/ 235 293 - 118 110 97.4 94.0 92.8 12.3 -	206 190 234 96.2 209 165 132 - 101 - N.D. N.D. N.D. N.D.	Y/1 38.7 44.1 24.1 23.4 22.7 23.4 22.7 N.D.	33.0 31.2 34.1 20.2 32.1 30.1 26.2 - 21.1 - N.D. N.D. 13.0	Zn/r 251 281 - 144 141 136 133 133 29.4 -	218 213 238 134 246 196 166 - - - - - - - - - - - - - - - - -

Transactions of The Research Institute of (51) Oceanochemistry Vol. 10, No. 1, April. 1997 付表2. 河床堆積物(1993.9採取)中のイオン交換態元素 [2% 酢酸 / 酢酸アンモニウム 緩衝液(pH=4.5)に抽出される成分の元素組成。表中の数値は堆積物中の濃度 である。]

	元素	Al	As	Ba	Ca	Fe	Mg	Na	Р	Рь	Si	К
		/ppm										
	20	642	51.3	51.8	52.0	134	21.9	31.8	47.5	16.3	77.4	143
	30	630	31.7	31.7	75.4	144	27.5	23.0	51.5	9.30	95.9	94.7
	40	711	27.4	53.6	65.2	87.3	23.4	16.1	12.1	8.50	88.8	53.4
	50	664	38.4	43.9	61.8	11.4	21.9	17.4	N.D.	5.80	66.7	5.0
号	60	719	49.4	37.4	73.1	8.90	24.9	22.3	23.3	7.80	75.4	61.9
	80	599	30.6	34.2	146	170	29.7	41.7	57.2	23.2	70.3	204

付表3. 河床堆積物(1993.9採取)中の易還元態元素 [0.2Mシュウ酸 / シュウ酸アンモニ ウム緩衝液(pH=3.0)に酸化鉄の還元溶解とともに抽出される成分の元素組成。 表中の数値は、溶解された酸化鉄中の濃度である。]

	元素	Al	As	В	Ba	Ca	Fe	Mg	Mn	Na	Р	РЬ	Se	Si	Ti	V	К	SOS
_		/%	/ppm	/ppm	/ppm	/ppm	/%	/%	/ppm	/ppm	/%	/ppm	/ppm	/%	/%	/ppm	/%	/%
	20	2.57	893	41.9	816	543	20.4	0.484	268	865	0.485	424	425	1.40	0.208	492	0.474	1.52
	30	2.23	605	65.3	337	556	15.3	0.400	217	615	0.333	303	386	1.17	0.156	425	0.327	0.895
	40	3.96	1090	91.0	1240	767	26.3	0.740	410	1050	0.586	193	565	1.98	0.239	577	0.630	2.52
	50	2.94	1180	89.2	932	843	19.5	0.593	312	949	0.429	432	715	1.55	0.186	498	0.516	1.46
号	60	2.64	533	30.2	622	575	15.2	0.562	289	445	0.311	143	651	1.28	0.146	339	0.239	1.13
	80	4.04	1040	52.5	318	1490	20.5	1.11	1090	664	1.28	353	816	2.19	0.237	613	0.251	0.684

[英文要旨]

Environmental Chemistry of Rivers and Lakes. Part III⁺, Composition and Distribution of Major, Minor, and Trace Elements Contained in Waters and Deposits Collected along the Acid River Sukawa, Japan.

T. Hori^{*1}, M. Kanao^{*2}, H. Nagai^{*1}, N. Taniguchi^{*1}, Y. Sugiyama^{*1}, M. Sugiyama^{*3}, and T. Takamatsu^{*2}

 *1 Graduate Scholl of Human and Environmental Studies, Kyoto University, Kyoto 606-01 Japan
 *2 Soil Science Section, National Institute for Environmental Studies, 162 Onogawa, Tsukuba, Ibaraki 305 Japan
 *3 Faculty of Integrated Human Studies, Kyoto University, Kyoto 606-01 Japan

Acidification of rivers and lakes due to acid rains has been becoming a serious problem concerning with the preservation of natural conditions of quatic environment. Although we human beings had never encountered such an experience, we have much knowledge about the neutralization processes of strong acids contained in the primary ocean and also about the consumption processes of hydronium ion contained in rain waters by ignous rocks, i.e., weathering reations. In order to investivgate the acidification and the neutralization reactions in aquatic environment, a typical, mineralogenous acidotrophic water, the River Sukawa, Yamagata, Japan, was investigated in detail. The composition and distribution of chemical elements, such as Al, B, Ba, Be, Ca, Cl, Co, Cr, Cu, Fe, K, La, Mg, Mn, Na, Ni, P, S, Sc, Si, Sr, Ti, V, Y, and Zn, were determined along with the measurement of pH, which veried from 1.5 (upstream) to 3.5 (down stream). As the result, the normalized concentrations of these elements, R_x , were found to be dependent, in five different ways, on the normalized chloride concentration, R_{cr} .

⁺ For Part II, see reference [28]

Transactions of The Research Institute of (53) Oceanochemistry Vol. 10, No. 1, April. 1997