分子の鋳型を用いるセンサーの開発と応用*

長岡 勉**

1. はじめに

分子認識は化学反応に特異性を期待する場合ま ず思いつく概念である。また,こうして我々が 「生きていける」のも体内において分子認識が高い 効率でしかも確実に行われている結果である。も ちろん分析化学においても分子認識が重要な概念 であることに異論はないと思われる。

ある分子を選択的に検出すると言うことは,他 の分子との区別をするということである。しかし, これを行うことは一般に容易ではなく,通常,非 常に巧妙な仕掛けが必要となる。したがって,こ のような認識システムの開発には膨大な資源(人, 金,時間)が必要となり,検出対象分子の種類が 加速度的に増大している現在,より簡単な合成手 法に基づく認識システムの開発が望まれている。 例えば,一定の手順に従えば目的とする分子のレ セプターが簡単に作製できるようなプロトコルの 開発である。

このような目的のため分子鋳型法が提案され、 様々な応用も報告されている[1-13]。この方法の 原理を Fig.1に示す。まず、目的分子(Target Molecule)と相互作用するモノマーで錯体を作成 し(Pre-assembly)、これを取り込む形でポリマー を合成する(Polymerization)。このようにして 作成したポリマーから目的分子を洗浄等により取 り除けば、目的の認識ポリマーができ上がる。鋳 型ポリマー(Molecularly imprinted polymer; MIP)の研究分野では、目的分子のことをテンプ レートと呼ぶことが多い。

この原理を基にして、すでに様々な方法が報告

Fig. 1 A standard technique for preparation of a molecularly imprinted polymer (MIP) receptor

・第165回京都化学者クラブ例会(2004年3月6日)講演

^{**}大阪府立大学先端科学研究所 〒599-8570 堺市学園町1-2

されている。鋳型法は一見優雅であるが,実際に は基質選択性があまり高くなく,また認識速度 (鋳型に目的分子が取り込まれる速度)も小さいこ とが指摘されてきた。著者のグループは鋳型法の このような欠点を克服するために,導電性ポリマー を利用する新しい鋳型作成法を開発した。この論 文では,この方法の概要を解説するとともに,セ ンサー等への応用についても述べる。

2. 導電性ポリマーを用いる鋳型ポリマー

導電性ポリマーは軽量な機能性導電材料として 幅広い用途がある[14-22]。この論文で取り扱うポ リピロールは最も一般的な導電性ポリマーの一つ であり,酸化状態で導電性を持つ。しかし,ポリ ピロールは陽分極により過酸化されやすい欠点を 持つ[23,24]。この過酸化されたポリマーは電子電 導性を持たないため,電子部品としての用途を考 えると劣化である。

過酸化はポリマーに含まれる陰イオン(ドーパ ント)を排出させ、ポリマーは絶縁体となる。ま た、過酸化に伴う脱ドープにより、ポリマーは多 孔質化することが知られている。この性質を利用 して、ドーパントの大きさにより細孔径が制御可 能な分子ふるい膜が作製されている[25,26]。著者 等は最近、この脱ドープの条件を適切に選択する ことにより、細孔を高精度鋳型として利用できる ことを見いだした[15,27-32]。この論文ではこの ような鋳型生成の機構と機能についてまず述べる。

Schemelに示すようにピロール(1) は酸化重合 されてポリピロール(2)を生ずる。生成したポリ ピロールは陽電荷を持つので、 重合時に電荷補償 のため陰イオンを取り込む必要がある。この陰イ オン(X⁻)はドーパントと呼ばれ、 導電性ポリマー の性質を決定する重要な因子である。ポリマーが さらに酸化される(過酸化:2→3)と陽電荷が消 滅し過酸化ポリマー(3)が生成する[33-39]。こ のときポリマーは電気的中性となるので、ドーパ ントも排出される。過酸化条件を適切に制御する と, 排出された後にドーパントの鋳型を形成する ことができる。ここで重要なことは、この過酸化 による脱ドープと同時にポリマーの硬化が起こり, 鋳型が高精度に保持されることである[40]。 Fig.2にこの鋳型生成の過程とテンプレート分子の 認識の様子を示す。金属あるいは炭素などの電極 上にポリピロール薄膜を電解酸化により重合・析 出させ, 電気化学的にこの薄膜をさらに酸化する とテンプレート(ドーパント)の排出が起こり(A), ポリマー内に鋳型が形成される(B)。鋳型の精度 は過酸化の条件と密接に関係している。一般に, 高い pH では過酸化は速い速度で進行するが精密 な鋳型は形成されず、分子ふるい用途に利用でき る程度の分解能しか得られない。Fig.3は過酸化の 条件を変化させたときに膜の形態を示したものあ る。高い pH あるいは高い酸化電位は強い過酸化 条件となり、膜の構造も大きく変化していること が分かる。特に強い過酸化条件を選択する(D) と膜が非常に多孔質化する。この場合、生成した

Scheme 1

Fig. 2 A model for enantioselective uptake of glutamic acid (glu) into an overoxidized polypyrrole. (A) Dedoping of glu and the cavity formation by overoxidation, and (B) selective uptake/release of glu cation upon charging/discharging the film.

Fig. 3 Surface morphology of polypyrrole films observed by STM. (A) Polypyrrole film doped with L-glu, (B) polypyrrole film overoxidized up to +1.0 V in a pH 6.9 phosphate buffer, (C) polypyrrole film overoxidized up to +1.4 V in a pH 6.9 phosphate buffer, and (D) polypyrrole film overoxidized in 0.1 M NaOH up to +1.0 V. The polypyrrole films were overoxidized potentiodynamically between -0.3 V and the values given above.

鋳型は腐食されて大きくなり,分子ふるい的な分 解能しか持たなくなる[15]。何れにせよ,過酸化 条件を検討するだけで,一定の手順で希望する目 的分子の鋳型ポリマーを作成する事が可能となっ た。

3. 過酸化ポリピロール膜の特性

Fig.4はこの方法で作成した鋳型高分子の認識特 性を示したものである[40]。テンプレートとして 1-ナフタレンスルホン酸イオンを用いてポリピロー ル膜を電極上に作製した。この膜をさらに電解酸 化により過酸化すると脱ドープが起こり、1-ナフ タレンスルホン酸の鋳型が形成された。図は水晶 振動子マイクロバランス電極上に作成した膜につ いての実験結果である。ナフタレンスルホン酸は 実験条件下で解離しているので電極を陽分極する ことにより膜内に取り込まれる。このときテンプ レートである1-ナフタレンスルホン酸は容易に膜 内に取り込まれるが、構造異性体である2-ナフタ レンスルホン酸は全く取り込まれていない。この ような簡単な方法で作成された膜が高い選択性を 示すことは、興味深い。2-ナフタレンスルホン酸 をテンプレートとして膜を作製した場合には、1-ナフタレンスルホン酸は取り込まれず、2-ナフタ レンスルホン酸が取り込まれることも確認してい る。

同様の例を Fig.5に示す [15]。これはL-グルタ ミン酸の鋳型ポリマー膜をカーボン電極上に作製 し、光学異性に関する認識能力を検討した結果で ある。検討した pH (1.7) においてグルタミン酸 は陽イオンとして存在しているので、陰分極する とテンプレートである L-グルタミン酸が優先的に 取り込まれていることが分かる (図A)。さらに、 取り込みは、グルタミン酸が中性二重イオンから 陽イオンとなる pH2付近から顕著となることが分 かる (図B)。

Fig. 4 Time dependence of resonance frequency for an overoxidized polypyrrole film imprinted with 1-naphthalenesulfonate (NS) in 0.010 M 1-NS and 2-NS solutions at +0.30 V vs. Ag | AgCl.

Fig. 5 Effect of (A) applied potential and (B) pH of solution for the uptake of 10 mM L-glu (●) and D-glu (■) acid into an overoxidized polypyrrole film imprinted with L-glu.

光学異性体に関する検討は、鋳型ポリマーの選 択性を評価する上で重要である。分子の大きさは 二つの光学異性体で全く同じである。したがって、 ポリマー内に生じた細孔が、単に分子ふるい的な 分解能しか持たなければ両者を区別することはで きない。Fig.5に示すように、L体とD体で取り込 み量に明確な差が見られることは、鋳型の内壁が アミノ酸の形を正確に反映していることを示して いる。

4. 鋳型を有するコロイドの作製

このような簡単な方法を用いて選択性の高いセ ンサーを作製することが可能となった。さらに本 法の応用として,過酸化ポリピロールのコロイド を作製した。このような方法で,分子鋳型を有す る選択性の高い吸着剤を容易に得ることができた [31]。

導電性ポリマーは一般に溶媒不要であるが,ポ リビニルアルコールなどの安定化剤存在下で容易 にコロイド粒子とすることができる。ポリピロー ルコロイドはピロールモノマーと安定化剤,そし てテンプレートとなるドーパントの混合物に酸化 剤を加えて重合することにより簡単に得ることが できる。得られたコロイドは遠心分離等により精 製したのち純水に再分散させ,さらにカラム電解 [41]などの方法で再酸化すること(過酸化)によ り鋳型を作製した。ここではアミノ酸の光学異性 体の分離に応用した例について述べる。

著者等の開発した鋳型作製法では、 テンプレー トは陰イオンである必要がある。これはテンプレー トがポリピロールにドープされる必要があるため である。しかし、たんぱくを構成するアミノ酸の 内、中性から弱酸性領域で陰イオンとなるのはグ ルタミン酸とアスパラギン酸のみである。アミノ 酸は高 pH 領域では陰イオンとなるが、このよう な条件ではピロールの重合が困難である。したがっ て、このような場合にはテンプレートとしてアナ ログ分子を用いた。Fig.6は L-乳酸(CH₃-CHOH-COOH) をテンプレート (ドーパント) として合 成したコロイドへのアラニン (CH₃-CHNH₂-COOH)の取り込み量を示したものである[31]。 このコロイドにおいても, 作製された鋳型はアラ ニンの光学異性を明確に認識していることが分か る。コロイドでは膜と異なり、強制的に電場を与 えることは困難であるが、作製されたコロイドは 負の電荷を持つため,酸性条件下でアミノ酸を陽 イオンにしておけば取り込みは容易に行える。 Fig.6において、過酸化されていないコロイド (untreated colloid) もかなり高いエナンチオ選択 性を示しているが, これはコロイドの作成時に加 えた酸化剤(過硫酸アンモニウム)が重合,過酸

化を一度に行ってしまうためと思われる[30,31,42]。 このような場合でも,再度,過酸化をカラム電解 等で行ったコロイド(treated colloid)の方が選 択性の面で有利である。

作製されたコロイドは、アナログのテンプレートを採用しているにもかかわらず高い光学異性認 識能力を持ち、他の研究者により報告されている 鋳型ポリマーに比べて10倍以上高い選択性を示し た[31]。また、コロイド粒子の場合、アミノ酸の 取り込みは数分以内に完了したので、取り込み速 度に関しても従来の鋳型ポリマーに比べて飛躍的 な向上が認められた。Fig.7は大きさの異なるアミ ノ酸の取り込みを示したもので、このコロイドが 光学異性の認識だけでなく、側鎖の大きさも正確 に認識していることが分かる[31]。

Fig. 6 Uptake at pH1.0 of 500 nmol alanine $(1.0 \times 10^{-4} \text{ M} \times 5\text{mL})$ into colloids prepared using a L-lactate. Closed symbols are for an electrochemically treated colloid and open symbols for an untreated colloid. (\blacklozenge , \diamondsuit) L-alanine, (\blacktriangle , \bigtriangleup) D-alanine. The colloids were polymerized at pH 4.0.

Fig. 7 Uptake of (\spadesuit) L- and (\diamondsuit) D-amino acids into the treated colloid as a function of the molecular volume of amino acids at pH 1.0 on a colloid addition of 11 mg. \triangle (Molecular volume) is the difference in the molecular volume between an amino acid and lactate. The other experimental conditions are the same as those for Fig. 6. Abbreviations: gly=glycine (optically inactive), ala=alanine, ser=serine, thr=threonine, val=valine, asn=asparagine, asp=aspartic acid and glu=glutamic acid.

5. おわりに

この論文では最近著者等が開発した分子鋳型ポ リマーの作製法とその特徴について述べた。この 方法を用いれば、簡単な手順で高い認識精度を持 つ高分子膜、コロイド粒子の作製が可能である。 現状では、ポリマー合成時のテンプレートは陰イ オンである必要がある。ただし、目的分子に形の よく似たアナログ体を用いることで、この困難は かなり解消することができる。現在、電気的中性 なテンプレート、陽イオンのテンプレートを用い た鋳型ポリマーの作製を検討中である。

6. 参考文献

- Mosback K. Trends Biochem. Sci. 1994, 19, 9
- [2] Damen J.; Neckers D. C. Tetrahedron Lett. 1980, 21, 1913
- [3] Wulff G.; Vietmeyer J.; Poll H.-G. Makromol. Chem. 1987, 188, 741
- [4] Muldoon M. T.; Stanker L. H. Anal. Chem. 1997, 69, 803
- [5] Kobayashi T.; Wang H. Y.; Fujii N. Chem. Lett. 1995, 927
- [6] Kempe M.; Mosbach K. J. Chromatogr. A 1995, 691, 317
- [7] Piletsky S. A.; Panasyuk T. L.; Piletskaya E. V.; Nicholls I. A.; Ulbricht M. J. Membr. Sci. 1999, 157, 263
- [8] Sellergren B. Anal. Chem. 1994, 66, 1578
- [9] Matsui J.; Miyoshi Y.; Dier O. D.; Takeuchi T. Anal. Chem. 1995, 67, 4404
- [10] Ramstrom O.; Anderson L. I.; Mosbach
 K. J. Org. Chem. 1993, 58, 7562
- [11] Whitcombe M. J.; Rodriguez M. E.; Villar P.; Vulfson E. N. J. Am. Chem. Soc. 1995, 117, 7105
- [12] Lubke M.; Whitcombe M. J.; Vulfson E.

N. J. Am. Chem. Soc. 1998, 120, 13342

- [13] Sellergen B.; Wieschemeyer J.; Boos K.-S.; Seidel D. Chem. Mat. 1998, 10, 4037
- [14] Genies E. M.; Lapkowski M.; Santier C.;Viel E. Synth. Met. 1987, 18, 631
- [15] Deore B.; Chen Z.; Nagaoka T. Anal. Chem. 2000, 72, 3989
- [16] Shiigi H.; Patil R. C.; Nakayama M.; Tonosaki T.; Ogura K. Recent Res. Devel. Electrochem. 1999, 2, 217
- [17] Ogura K.; Shiigi H. Electrochem. Solid-State Lett. 1999, 2, 478
- [18] Shiigi H.; Oho T.; Tonosaki T.; Ogura K.Electrochemistry 2001, 69, 216
- [19] Cadogan A.; Gao Z.; Lewenstam A.;
 Ivaska A.; Diamond A. Anal. Chem. 1992, 64, 2496
- [20] Hulanicki A.; Michalska A. Electroanalysis 1995, 7, 692
- [21] Nagaoka T.; Ahmed S. M.; Ogura K. J. Electrochem. Soc. 1999, 146, 3378
- [22] Patil R. C.; Ahmed S. M.; Shiigi H.; Nakayama M.; Ogura K. J. Polym. Sci. Part A, Polym. Chem. 1999, 37, 4596
- [23] Farrington A. M.; Slater J. M. Electroanalysis 1997, 9, 843
- [24] Gao Z.; Zi M.; Chen B. J. Electroanal. Chem. 1994, 373, 141
- [25] Spurlock L. D.; Jaramillo A.; Praserthdam A.; Lewis J.; Brajter-Toth A. Anal. Chim. Acta 1996, 336, 37
- [26] Malitesta C.; Losito I.; Zambonin P. G. Anal. Chem. 1999, 71, 1366
- [27] Deore B.; Chen Z.; Nagaoka T. Anal. Sci. 1999, 15, 827
- [28] Chen Z.; Okimoto A.; Kiyonaga T.; Nagaoka T. Anal. Chem. 1999, 71, 1834

- [29] Chen Z.; Takei Y.; Deore B.; Nagaoka T. Analyst 2000, 125, 2249
- [30] Shiigi H.; Kishimoto M.; Yakabe H.;
 Deore B.; Nagaoka T. Anal. Sci. 2002, 18, 41
- [31] Okuno H.; KitanoT.;Yakabe H.; Kishimoto M.; Bhavana B. A.; Shiigi H.; Nagaoka T. Anal. Chem. 2002, 74, 4184
- [32] Deore B.; Yakabe H.; Shiigi H.; Nagaoka T. Analyst 2002, 127, 935
- [33] Beck F.; Braun P.; Oberst M. Ber. Bunsen-Ges. Phys. Chem. 1999, 91, 967
- [34] Kim Y.; Lee J. Y.; Moon D. K.; Kim C. Y. Synth. Met. 1995, 69, 471
- [35] Osaka T.; Momma T.; Komada S.; Kanagawa H. J. Electroanal. Chem. 1994, 372, 201

- [36] Christensen P. A.; Hamnett A. Electrochim. Acta 1991, 36, 1263
- [37] Bellamy L. J. (1975) "The infrared spectra of complex molecules", 3rd, Chapman and Hall, London
- [38] Witkowski A.; Brajter-Toth A. Anal. Chem. 1992, 64, 635
- [39] Aaramillo A.; Spurlock L. D.; Young V.; Brajter-Toth A. Analyst 1999, 124, 1215
- [40] Shiigi H.; Okamura K.; Kijima D.; Hironaka A.; Deore B.; Sree U.; Nagaoka T. Electrochem. Solid-State Lett. 2003, 6, H1
- [41] Fujinaga T. Pure Appl. Chem. 1971, 25, 709
- [42] Shiigi H.; Yakabe H.; Kishimoto M.; Kijima D.; Zhang Y.; Sree U.; Deore B. A.; Nagaoka T. Microchim. Acta 2003, 143, 155