高知市中心部における降下物の化学成分の解析

1. はじめに

高知市の降水量の平年値(1991-2020年)は 2,666.4 mm [1]であり、台風や四国南方の太平 洋上を通過する低気圧による降雨が多い.一方、 日照時間の平年値は2,159.71時間[1]と長い. 高知市は人口33万人(2000年国勢調査による) の人口密集地域であり、交通量は多いが、規模の 大きな工場や発電所などはない.

高知女子大学(現・高知県立大学)生活科学部 環境理学科化学研究室では,高知市中心部におけ る降下物の化学成分の解析を行うことを目的とし て,1994年9月から2006年12月まで降下物の 採取と成分の測定を行った.採取地点は高知市中 心部にある高知女子大学(現・高知県立大学)永 国寺キャンパス(北緯33°33'51",東経133° 32'03")実験棟屋上(地上約14.5 m,海抜約 17.5 m)の1地点である.試料採取方法,測定項 目を表1に示す.CaとSO4¹⁰の非海塩由来(nss) 濃度は Na がすべて海塩由来であると仮定して計 算し²⁰,これらと NH4, NO3の濃度を用いて酸性

一 色 健 司*

度ポテンシアル(以下「AP」という), 中和ポテ ンシアル(以下「NP」という)を計算した.

本稿では、これらの降下物成分の観測結果およ び解析結果のうち、すでに論文[2,3]として公 表したものの概要およびその後に解析した結果を 述べる.

2. 降雨中の主要成分の特徴

2-1. 解析対象とした降雨

pH, 導電率(以下,「EC」という)を測定し た降雨は, 1994年9月~2001年12月にあった降 水量1mm以上の降雨772中468(降雨回捕捉率 60.0%), 総降水量19,195mm中17,808mm(降 水量捕捉率92.8%)であり,イオン成分の考察の 対象とした降雨は1996年11月~2001年12月の 降水量1mm以上の降雨571回中278回(降雨回 捕捉率48.7%), 総降水量15,181mm中 13,679mm(降水量捕捉率90.1%)であった. 試 料の採取方法,成分の測定方法および濃度の計算 方法は文献2に記載した通りである.以下の節で

3-4-441 本党 百万 廿日 日日	ž	乾性降下物	
动 件	採取方法*1	採取方法*1	
1994年9月-1995年6月	RG	pH, EC, AN	—
1995年6月-1996年11月	RG	pH, EC, AN, CA	_
1996年11月-1998年10月	RG	pH, EC, AN, CA, $\rm NH_4$	—
1998年10月-1998年12月	RG	pH, EC, AN, CA, $\rm NH_4$	CL
1000年1月 2001年19月	(RG	pH, EC	CI
1999 平 1 月 - 2001 平 12 月	CL	AN, CA, NH_4	CL
2002年2月-2006年12月	CL *3	pH, EC, AN, CA, NH ₄	CL *3

表1. 降下物の採取方法と測定項目

^{*1} RG:堀場製作所製酸性雨分取器レインゴーランド AR-8II

CL:円筒型採取容器(TPX 製メスシリンダ 開口面積 24.6 cm², 高さ 31.8 cm)

AN : C1, SO₄, NO₃. CA : Na, K, Ca, Mg.

*3 湿性降下物と乾性降下物を一括して採取した.

*高知県立大学名誉教授

77周年秋季講演会(令和5年11月11日)講演

は特徴的な事項を文献2から抜粋して述べる.

2-2. 降雨成分の経年変化

降雨の pH, EC の経年変化を図1に示す. pH はほぼ一定で推移し, EC は若干の減少傾向を示 した. EC は [Na] (0.84), [Cl] (0.86) と強い 相関(括弧内は相関係数)があったので, EC の 変化は主として海塩由来成分の変化によるものと 推定される.一方,図2に示したように,APが NP に対して常に過剰なまま連動して変化してお り,相関係数も0.74 であった.このため,全期 間を通じて pH が弱酸性のままほぼ一定だったの は,AP と NP がほぼ連動して変化したためであ る.

2-3. 降雨 pH の収束値の経年変化

一般に降雨は,降雨をもたらした雲が生成した ときに降雨に取り込まれた成分(レインアウト成 分,以下「RO」という)と降雨が降下中に取り 込まれた成分(ウォッシュアウト成分,以下 「WO」という)を含む.WOは局所的な大気環 境の影響を受けるため,降水量の少ない雨のpH や成分は大きく変動する.一方,降水量が多い雨 では,降雨の初期にのみ取り込まれるWOの寄 与が相対的に小さくなるため,局所的な大気環境 の影響を受けない値に近づく.このため,降雨の pH は降水量の増加とともにある特定のpH 値に 収束するという傾向を示す.観測年毎(1月~12 月)に降雨のpH と降水量の関係をプロットする と,各年とも降水量の増加とともに pH 値が 5.0 ~5.1 の間に収束し,変化はほとんど見られな かった[2].したがって,観測期間を通じて, RO による酸性化の状況にはほとんど変化がな かったものと考えられる.

2-4. 高知市中心部と香北町測定局との比較

高知市中心部の全観測期間を通じての pH の平 均値は 4.7, EC の平均値は 19 µScm⁻¹であった. 一方,高知県による降雨観測定点である高知県香 北町(現・香美市香北町)測定局(北緯 33°

42'18", 東経 133° 21'51", 海抜約 200 m, 以下「香 北」という)の 1994 年~2001 年の pH の平均値 は 4.84, EC の平均値は 14.2µScm⁻¹であった [4]. また,比較した全期間を通じて,高知市中心部の 降雨の pH は香北と同程度であるが,EC は香北 よりも高い傾向を示していた.環境庁(省)が 1983~2000 年度に実施した第1次~第4次酸性 雨対策調査と 2001 年度及び 2002 年度の酸性雨調 査の結果 [5] によると,西日本太平洋側の降雨 の pH の平均値は一部の都市域を除いて 4.5~4.8 に分布している.高知市中心部の降雨の pH も各 年の平均値はこの範囲内に収まっており,西日本 の他の地域と異なる傾向は示していなかった.

高知市中心部-香北間での pH, EC および各 成分の年平均値の相関係数を求めると,海塩由来 のものが大部分を占める Na (0.89), Cl (0.85), Mg (0.79)の3成分および NO₃ (0.85)について は両地点間でやや強い正の相関がみられ, nss-SO₄ (-0.78)にはやや強い負の相関がみられた(括 弧内は相関係数).他の成分についてはあまりよ い相関は見られなかった.したがって,高知市中 心部の降雨は,海塩由来成分については香北と同 一の要因で変動しているが, NO₃および nss-SO₄ を除く他の成分については異なる要因で変動して いるらしい.

2-5. 黄砂及び台風の影響

春の黄砂現象と夏から秋にかけて来襲する台風 は高知市の降雨成分に大きな影響を与えると考え られるため、これらの影響を検討した.

表2上段に黄砂観測日当日および黄砂観測日直 後の6降雨の降雨成分の平均値およびこれらの黄 砂観測日直前の6降雨の降雨成分の平均値を示し た、黄砂影響下の降雨中ですべての成分が増加し ているのは、黄砂の付加を受けた雨水中では黄砂 粒子からこれらの成分が溶出ためであるが、AP は黄砂前に比べて 3.2 倍, NP は 4.4 倍とどちらも 増加を示した.これは、黄砂が酸性化成分、中和 成分の両方の負荷に寄与していることを示してい る. また, 降雨の pH 低下に寄与する AP-NP は 黄砂影響下では黄砂前の 1.4 倍に増加し,これに 対応するように pH は 0.1 低下している. 黄砂影 響下の [nss-SO4] / [NO3] および [nss-Ca] / [NH4] は黄砂前よりも増加している.以上のことから, 黄砂はイオン成分濃度の増大への寄与は大きいが 降雨の酸性化に対する寄与はほとんどないこと. 黄砂の影響を受けていない降雨と比べて、酸性化 成分としては SO4 の付加が大きく、中和成分と しては Ca の付加が大きいことがわかった. 黄砂 は酸性化成分を吸着しつつ大気中を輸送されてい ることがわかっているが [6], 本観測結果は黄砂 が酸性化成分を中和するはたらきも持っているこ とを示唆している.一方,黄砂影響下の降雨によ る湿性沈着量の全湿性沈着量に占める割合を観測 値のみに基いて計算した結果を表3に示す. 黄砂 影響下の降雨の降水量の全降水量に占める構成比 は2%しかなく、Naの構成比も3%程度であるが、 AP および NP を構成する 4 成分の構成比は 7~ 12% とかなり大きい. このことから, 4 成分の湿 性沈着に対する黄砂の寄与は、他の降雨に比べて

表2. 黄砂前,黄砂当日・直後および台風前,台風,台風後の降雨の総降水量および降水のpH,ECおよび各溶存濃度の平均値

	総降水量	pН	EC		濃度 /µeq L-1						nss-SO ₄ /NO ₃	nss-Ca/NH ₄	
	/mm		$/\mu \mathrm{S~cm}^{-1}$	Na	$nss-SO_4$	NO_3	NH_4	nss-Ca	AP	NP	AP-NP		
黄砂前	113	4.5	24.2	24.4	59.1	33.5	40.9	15.2	92.6	56.1	36.5	1.8	0.4
黄砂当日·直後	268	4.4	40.6	162.4	205.0	92.2	155.6	90.2	297.2	245.7	51.5	2.2	0.6
台風前	257	4.6	19.1	16.1	39.6	16.9	16.4	4.4	56.5	20.7	35.8	2.3	0.3
台風	471	5.1	36.0	189.3	17.7	5.2	10.3	8.8	23.0	19.1	3.9	3.4	0.9
台風後	282	4.8	13.5	14.2	19.6	14.7	13.9	3.9	34.3	17.8	16.4	1.3	0.3
全観測期間		47	10.0	20.0	97.9	11.1	10.0	6.9	20.0	05.0	10.1	0.4	0.2
の平均値		4.7	19.0	36.9	21.2	11.1	19.0	0.2	38.2	23.2	13.1	2.4	0.3

		雨量 /	湿性沈着量 /mmol m ⁻²					
		mm	Na	$nss-SO_4$	NO_3	nss-Ca	NH_4	
H	黄砂影響下の降水	268	18.4	11.6	10.5	5.1	17.6	
ī	台風影響下の降水	471	89.1	4.2	2.5	2.1	4.8	
	全降水	13,604	530.0	184.6	151.7	41.8	258.2	
黄砂影	響下の降水の構成比 /%	2.0	3.5	6.3	6.9	12.2	6.8	
台風影	響下の降水の構成比 /%	3.5	16.8	2.3	1.6	5.0	1.9	

表3. 湿性沈着に対する黄砂および台風の影響

3.5~6倍にもなることになる.

全観測期間中に降雨を捕集することができた台 風7個による降雨の成分の平均値と、その前後の 台風と無関係な降雨の成分の平均値を表2下段に 示す。海塩の指標となる Na の濃度は、台風の降 雨ではその前後の降雨に比べて12倍程度であっ た. 台風の降雨による Na の湿性沈着量および全 降雨による Na の湿性沈着量を対応する降水量と 共に表3に示す. 台風の降水量の全降水量に対す る割合が3.5%であるのに対し、台風の降雨によ る Na の湿性沈着量の全湿性沈着量に対する割合 が16.8%となった。海塩の湿性沈着は台風の降雨 の寄与が通常の降雨に対して5倍程度も大きい. 一方,表2に示したように,NO3の濃度は、台風 の降雨ではその前後の降雨に比べて1/3程度を示 し, nss-Caの濃度は2倍程度を示した. また, pHの値は、台風の降雨では 5.1、前後の降雨では 4.6, 4.8 と, 台風による降雨の pH は高い値を示 した.一方, AP は台風前後と比べると台風時に 減少しているが、NP は台風前、台風時、台風後 を通してほとんど変化しておらず, AP-NP は台 風の降雨では大きく減少している.このことから, 台風による降雨の pH の増加は主として AP の減 少によるものであると考えられる.湿性沈着量に ついても、台風の降水量の全降水量に対する割合 と比較して, nss-SO₄, NO₃の構成比は小さい. 以上のことから、台風の降雨は、主として海塩の 付加に寄与し、酸性化成分が減少することによる AP-NPの減少によって降雨の pH が上昇してい るということができる.

3. 初期降雨中の主要成分の推移

3-1. 解析対象とした降雨

解析対象とした降雨は,1996年11月から1998 年10月までの降水量1mm以上の降雨中の132 降雨である.このうち43降雨は降水量7mm以 下であった.以上の降雨の降り始めから降水量 7mmまで(初期降雨と呼ぶ)は降水量1mm毎 に採取し,降水量8mm以降は一括採取した.以 下の節では特徴的な事項を文献3から抜粋して述 べる.

3-2. 初期降雨中の成分の降雨経過に伴う推移

降り始めから降水量1mm毎の降雨中の各成分 のデータの分布を,箱ひげ図を用いて表示したも のを図3に示す.

pHの中央値は降雨の経過に伴って緩やかな増 加傾向が見られ,四分位範囲(IQD)はすべての 初期降雨でほぼ一定であった.また,はずれ値も 含めた pH の分布範囲は,降雨の経過と共に減少 する傾向が見られた.一方,EC の中央値につい ても降雨の経過に伴って減少傾向が見られ,ばら つきも降雨の経過と共に減少するという傾向が見 られた.以上の他,pH を除いたすべての成分に ついて,降水量 1~3 mm の間に急激に減少し, その後の減少が緩やかになるという傾向が見られ た.

3-3. 初期降雨の pH に影響を与える要因

降雨の経過に伴う AP および NP の変化をそれ ぞれ図3に示す. AP, NP とも降り始めから雨 量3mm まで急激に減少し,その後緩やかに減少 するという傾向を示した.

1-7:降り始めから降水量1mm毎の降雨,8:単一降雨.●:平均値.
上下のひげの端はそれぞれUQ+1.5×IQDおよびLQ-1.5×IQD(IQDは四分位範囲(UQ-LQ)),白丸は上下のひげではさまれた区間外のデータ(はずれ値)である.

一般に、NO₃の起源は自動車の排気ガスなどが 主であると推定されており、降雨中のNO₃はSO₄ に比べて局地的な付加の寄与が大きいと考えられ ている. 高知市中心部でも同様の状況であれば, NO₃はWOによる寄与が大きいので、APに占め る[NO₃]の比率が降雨ととも減少するはずである. 降雨の経過に伴う [NO₃]/APを図3に示した. NO₃/APは,降り始め後雨量3mmまで若干減少 し、その後はほぼ一定となるという傾向を示して いる. 既報 [2] では. 高知市中心部の単一降雨 中の [NO₃]/[SO₄] は全国平均値と比べてやや 小さいことを明らかにした.これは、高知市中心 部では窒素酸化物の降雨への取り込み量が全国平 均に比べて少ないことを示唆するが、WOの寄与 が大きいと考えられる NO₃の比率の初期降雨に おける変化が小さいことと整合的である.

一方,図3に示した NP に占める [NH4]の比率は,AP とは異なりほとんど変化していない. NP は降雨の経過とともに減少する傾向を示して いるので, RO, WO の両起源のものを含んでい ると思われるが, NP を構成する NH₄と nss-Ca の比率は RO と WO で差違がほとんどないもの と思われる.

以上のことから、高知市中心部における降雨の 成分は、降り始めから降水量2mmまではWO の寄与による濃度増加が大きいこと、WOの寄与 はNO₃がやや顕著であることが明らかとなった。

4. 湿性降下物及び乾性降下物による沈着量の推移

4-1. 解析対象とした期間および採取方法

観測した期間は 1998 年 11 月~2001 年 12 月で ある. 湿性降下物(降雨)は,円筒型採取容器を降 雨開始直前に設置し,降雨がやんだ直後に取り込 むことによって採取した.採取した降雨は,降水 量 1 mm 以上の 571 降雨中 278 降雨(降雨回捕捉 率は 48.7%),総降水量 15,181 mm 中 13,679 mm (降水量捕捉率 90.1%)であった.採取した雨水

中の成分濃度と降水量を用いて,1か月間当たり 総沈着量を計算した.

乾性降下物は円筒型採取容器を降雨がやんだ後 に設置して放置し,次の降雨の前に回収した.採 取した時間は,対象期間中の総無降雨時間 22,605 時間のうち 12,044 時間であった(採取率 53.3%). 回収した採取容器に超純水を加えて水可溶性成分 を抽出して,抽出水中の各成分濃度を測定し,こ れらと抽出水体積,採取時間,採取容器開口面積 を用いて,採取期間中の総沈着量を計算した.乾 性降下物を採取していない期間を含む1か月当た り総沈着量は,無降雨期間のうち試料を採取しな かった期間の沈着量が当該期間に採取した実測沈 着量と等しいとみなして計算した.

4-2. 乾性降下物および湿性降下物の沈着量の推 移

1か月ごとの乾性降下物沈着量,湿性降下物沈 着量の推移を図4に示す.ほぼすべての成分につ いて,湿性沈着量は降雨量との相関が強く降水量 が多い時に多くなるが,乾性沈着量には顕著な経 年変動は見られなかった.また,降水量が少ない 時の湿性沈着量と乾性沈着量は同程度であること から,降下物負荷の影響は降雨がない時期でも現 れることが示唆された.

次に,湿性沈着,乾性沈着の酸性化への寄与を 検討した結果を図5に示す. AP-NP は湿性沈着 では正,乾性沈着ではほぼ0となっていることか ら,湿性沈着が酸負荷の主原因であると推察でき る.また,AP中のSO₄,NO₃は湿性沈着,乾性 沈着の間での違いはほぼないが,NP中のnss-Ca は湿性沈着に比べて乾性沈着が大きい傾向を示し た.このことは,乾性沈着は浮遊中あるいは降下 中のCaの付加によって酸性化が抑制されている ことを示している.

5. 湿性降下物, 乾性降下物一括採取による 沈着量の推移

5-1. 解析対象とした期間および採取方法

円筒型採取容器を開口したまま設置して湿性性 降下物と乾性降下物を分けないで採取し,一定期 間ごとに採取容器を回収した.採取期間は2002 年2月~2006年12月の総時間43,283時間中 40,833時間であった(捕捉率94.3%).回収した 採取容器に超純水を加えて水可溶性成分を抽出し, 抽出水をヌクレポアフィルタ(0.2 µm)でろ過した. 抽出水中のpH, EC, NH₄, Cl, SO₄, NO₃, Na, K, Ca, Mg, Cr, Mn, Fe, Co, Ni, Cuおよび フィルタに捕捉された粒子状物質中のNa, K, Ca, Mg, Cr, Mn, Fe, Co, Ni, Cuを測定し, ろ液体積,採取時間,採取容器開口面積から,1 か月ごとの総沈着量を計算した.

5-2. 沈着量の推移

水可溶性成分の沈着量の推移を図6に示す.ほ とんどが海塩起源と思われる Na, Cl および酸性 化成分は雨量との正相関が強い.これらの成分は 水可溶性が高いためと考えられる.沈着物の酸性 度の指標となる AP-NP で示される沈着物の酸性

■:月間降水量

図8. H⁺および重金属水可溶性成分の沈着量(1か月ごと)と AP-NP の関係

度は NH₄ 負荷が高い時期を除くと正の値となっ ており,この観測を実施した期間中も酸性化成分 が過剰の状態が続いていることを示している.

水不溶性重金属の沈着量の推移を図7に示す. 全般的に重金属沈着量の間には若干の対応関係が 見られる.個々の元素を見ると,Fe,Mn,Co, Niは雨量が少ない時に沈着量が増える傾向が見 える時期がある(2002年末,2004年前期,2005 年前期). 一方, Cu, Cr は降水量が多い時に沈 着量が増える傾向が見える時期がある(2003年 半ば,2005年初め). しかし,雨量と各沈着量の 残布図および相関係数からは明確な相関関係を見 出すことはできなかった.

5-3. 沈着量間の関係

水可溶性成分の沈着量間の相関を見たところ,

Na-Cl (0.99), Mg-Cl (0.99), Na-Mg (1.00) に 非常に強い相関が見られた(各カッコ内は相関係 数).一方,重金属成分の水可溶性成分間には系 統的な相関は特に見られなかった.

重金属成分の水可溶性成分と沈着物の酸性度の 指標となる AP-NP の関係に注目する.図8に水 可溶性成分の沈着量と(AP-NP)沈着量間の相 関係数と散布図を示す.相関係数によるとそれほ ど大きな値を示さなかったが,散布図からはいず れの重金属についても AP が過剰になると水可溶 性重金属成分が増加する傾向が見られる.このこ とは,沈着物の酸性度が増加すると不溶性沈着中 の重金属成分の一部が可溶化することを示してい る.

6. おわりに

長期間にわたって観測を継続することの困難さ から,全観測期間を通じて同一の試料採取方法を 継続することによって降下物の化学成分の傾向を 把握することはできなかったが,試料採取方法ご とに解析の目的や方法を設定して高知市中心部に おける降下物の化学成分の特徴と傾向をある程度 まで明らかにすることができた.

7. 謝辞

本稿に記述した観測およびデータ整理は,高知 女子大学生活科学部環境理学科化学研究室に配属 された卒業研究生20名の協力なくしては実施す ることはできませんでした.ここに謝意を表しま す.また,本稿のもととなる講演を行う機会をく ださった京都大学化学研究所 宗林由樹教授並び に公益財団法人海洋化学研究所の皆様に感謝いた します.

注

- 1)本稿では化学種のイオンの価数はすべて省略 した.
- 2) 非海塩由来成分は通例では Cl がすべて海塩 由来であると仮定して計算するが、高知市中 心部では酸-塩基バランスを検討した結果、 非海塩由来の Cl がかなり含まれていること が示唆されたため、本研究では Na を海塩成 分の指標として選んだ。

文献

- [1] https://www.data.jma.go.jp/obd/stats/etrn/ view/nml_sfc_ym.php?prec_no=74&block_ no=47893(閲覧日 2024 年 9 月 1 日)
- [2] 一色健司,三池佳子,高知女子大学紀要 生活科学部編,第58巻(2009),11-27.
- [3] 一色健司,高知女子大学紀要 生活科学部編, 第 59 巻 (2010),9-16.
- [4] 高知県, 大気環境調査報告書 平成10, 11, 12, 13, 14 年度版 (1998-2002).
- [5] 環境省酸性雨対策検討会,酸性雨対策調査総合とりまとめ報告書(2004).
- [6] D. Trochkine, Y. Iwasaka, A. Matsuki, M. Yamada, Y.-S. Kim, T. Nagatani, D. Zhang, G.-Y. Shi, Z. Shen, J. Geophys. Res., 108, No.D23, 8642 (2003). 岩坂泰信, 黄砂-その謎を追う, 紀伊國屋書店 (2006).